Unverified Commit 144bc70f authored by Liangsheng Yin's avatar Liangsheng Yin Committed by GitHub
Browse files

Organize flashinfer indices update (#1378)

parent 46094e0c
import torch
import triton
import triton.language as tl
@triton.jit
def create_flashinfer_kv_indices_triton(
req_to_token_ptr, # [max_batch, max_context_len]
req_pool_indices_ptr,
page_kernel_lens_ptr,
kv_indptr,
kv_start_idx,
max_context_len,
kv_indices_ptr,
):
BLOCK_SIZE: tl.constexpr = 512
pid = tl.program_id(axis=0)
req_pool_index = tl.load(req_pool_indices_ptr + pid)
kv_indices_offset = tl.load(kv_indptr + pid)
kv_start = 0
kv_end = 0
if kv_start_idx:
kv_start = tl.load(kv_start_idx + pid).to(tl.int32)
kv_end = kv_start
kv_end += tl.load(page_kernel_lens_ptr + pid).to(tl.int32)
req_to_token_ptr += req_pool_index * max_context_len
kv_indices_ptr += kv_indices_offset
ld_offset = kv_start + tl.arange(0, BLOCK_SIZE)
st_offset = tl.arange(0, BLOCK_SIZE)
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
for _ in range(num_loop):
mask = ld_offset < kv_end
data = tl.load(req_to_token_ptr + ld_offset, mask=mask)
tl.store(kv_indices_ptr + st_offset, data, mask=mask)
ld_offset += BLOCK_SIZE
st_offset += BLOCK_SIZE
class FlashinferUpdater:
def __init__(
self,
forward_mode,
model_runner,
req_pool_indices,
seq_lens,
prefix_lens,
flashinfer_decode_wrapper=None,
flashinfer_use_ragged=False,
):
self.forward_mode = forward_mode
self.model_runner = model_runner
self.req_pool_indices = req_pool_indices
self.seq_lens = seq_lens
self.prefix_lens = prefix_lens
self.flashinfer_use_ragged = flashinfer_use_ragged
self.num_qo_heads = (
model_runner.model_config.num_attention_heads // model_runner.tp_size
)
self.num_kv_heads = model_runner.model_config.get_num_kv_heads(
model_runner.tp_size
)
self.head_dim = model_runner.model_config.head_dim
self.batch_size = len(req_pool_indices)
self.kv_last_page_len = torch.ones(
(self.batch_size,), dtype=torch.int32, device="cuda"
)
(
self.flashinfer_decode_wrapper,
self.flashinfer_prefill_wrapper_ragged,
self.flashinfer_prefill_wrapper_paged,
) = (
flashinfer_decode_wrapper,
self.model_runner.flashinfer_prefill_wrapper_ragged,
self.model_runner.flashinfer_prefill_wrapper_paged,
)
# CUDA graph uses different flashinfer_decode_wrapper
if self.flashinfer_decode_wrapper is None:
self.flashinfer_decode_wrapper = self.model_runner.flashinfer_decode_wrapper
def _init_indices_no_window(self):
if self.flashinfer_use_ragged:
paged_kernel_lens = self.prefix_lens
else:
paged_kernel_lens = self.seq_lens
self.kv_indptr = torch.zeros(
(self.batch_size + 1,), dtype=torch.int32, device="cuda"
)
self.kv_indptr[1:] = torch.cumsum(paged_kernel_lens, dim=0)
self.kv_indices = torch.empty(
self.kv_indptr[-1], dtype=torch.int32, device="cuda"
)
create_flashinfer_kv_indices_triton[(self.batch_size,)](
self.model_runner.req_to_token_pool.req_to_token,
self.req_pool_indices,
paged_kernel_lens,
self.kv_indptr,
None,
self.model_runner.req_to_token_pool.req_to_token.size(1),
self.kv_indices,
)
def _init_indices_window(self, wrapper_id):
# window attention use paged only
if wrapper_id == 0:
if self.forward_mode.is_decode():
paged_kernel_lens = torch.minimum(
self.seq_lens,
torch.tensor(self.model_runner.sliding_window_size + 1),
)
else:
paged_kernel_lens = torch.minimum(
self.seq_lens,
torch.tensor(self.model_runner.sliding_window_size)
+ self.seq_lens
- self.prefix_lens,
)
else:
paged_kernel_lens = self.seq_lens
kv_start_idx = self.seq_lens - paged_kernel_lens
self.kv_indptr = torch.zeros(
(self.batch_size + 1,), dtype=torch.int32, device="cuda"
)
self.kv_indptr[1:] = torch.cumsum(paged_kernel_lens, dim=0)
self.kv_indices = torch.empty(
self.kv_indptr[-1], dtype=torch.int32, device="cuda"
)
create_flashinfer_kv_indices_triton[(self.batch_size,)](
self.model_runner.req_to_token_pool.req_to_token,
self.req_pool_indices,
paged_kernel_lens,
self.kv_indptr,
kv_start_idx,
self.model_runner.req_to_token_pool.req_to_token.size(1),
self.kv_indices,
)
def _update_decode_indices(self, decode_wrapper):
decode_wrapper.end_forward()
decode_wrapper.begin_forward(
self.kv_indptr,
self.kv_indices,
self.kv_last_page_len,
self.num_qo_heads,
self.num_kv_heads,
self.head_dim,
1,
data_type=self.model_runner.kv_cache_dtype,
q_data_type=self.model_runner.dtype,
)
def _update_extend_indices(self, ragged_wrapper, paged_wrapper):
# extend part
qo_indptr = torch.zeros(
(self.batch_size + 1,), dtype=torch.int32, device="cuda"
)
qo_indptr[1:] = torch.cumsum(self.seq_lens - self.prefix_lens, dim=0)
if self.flashinfer_use_ragged:
ragged_wrapper.end_forward()
ragged_wrapper.begin_forward(
qo_indptr,
qo_indptr,
self.num_qo_heads,
self.num_kv_heads,
self.head_dim,
)
# cached part
paged_wrapper.end_forward()
paged_wrapper.begin_forward(
qo_indptr,
self.kv_indptr,
self.kv_indices,
self.kv_last_page_len,
self.num_qo_heads,
self.num_kv_heads,
self.head_dim,
1,
)
def update_indices_no_window(self):
self._init_indices_no_window()
if self.forward_mode.is_decode():
self._update_decode_indices(self.flashinfer_decode_wrapper)
else:
self._update_extend_indices(
self.flashinfer_prefill_wrapper_ragged,
self.flashinfer_prefill_wrapper_paged,
)
def update_indices_window(self):
assert self.flashinfer_use_ragged is False
for wrapper_id in range(2):
self._init_indices_window(wrapper_id)
if self.forward_mode.is_decode():
self._update_decode_indices(self.flashinfer_decode_wrapper[wrapper_id])
else:
self._update_extend_indices(
None,
self.flashinfer_prefill_wrapper_paged[wrapper_id],
)
def update_flashinfer_indices(
forward_mode,
model_runner,
req_pool_indices,
seq_lens,
prefix_lens,
flashinfer_decode_wrapper=None,
flashinfer_use_ragged=False,
):
flashinfer_updater = FlashinferUpdater(
forward_mode,
model_runner,
req_pool_indices,
seq_lens,
prefix_lens,
flashinfer_decode_wrapper,
flashinfer_use_ragged,
)
if model_runner.sliding_window_size is None:
flashinfer_updater.update_indices_no_window()
else:
flashinfer_updater.update_indices_window()
...@@ -349,6 +349,7 @@ class ScheduleBatch: ...@@ -349,6 +349,7 @@ class ScheduleBatch:
# For mixed chunekd prefill # For mixed chunekd prefill
prefix_lens_cpu: List[int] = None prefix_lens_cpu: List[int] = None
running_bs: int = None
# For processing logprobs # For processing logprobs
return_logprob: bool = False return_logprob: bool = False
...@@ -446,6 +447,9 @@ class ScheduleBatch: ...@@ -446,6 +447,9 @@ class ScheduleBatch:
self.sampling_info = SamplingBatchInfo.from_schedule_batch(self, vocab_size) self.sampling_info = SamplingBatchInfo.from_schedule_batch(self, vocab_size)
def mix_with_running(self, running_batch: "ScheduleBatch"): def mix_with_running(self, running_batch: "ScheduleBatch"):
self.forward_mode = ForwardMode.MIXED
self.running_bs = running_batch.batch_size()
# NOTE: prefix_indices is what has been cached, but we don't cache each decode step # NOTE: prefix_indices is what has been cached, but we don't cache each decode step
prefix_lens_cpu = [len(r.prefix_indices) for r in self.reqs] prefix_lens_cpu = [len(r.prefix_indices) for r in self.reqs]
prefix_lens_cpu.extend( prefix_lens_cpu.extend(
......
...@@ -25,6 +25,7 @@ from flashinfer.decode import _grouped_size_compiled_for_decode_kernels ...@@ -25,6 +25,7 @@ from flashinfer.decode import _grouped_size_compiled_for_decode_kernels
from vllm.distributed.parallel_state import graph_capture from vllm.distributed.parallel_state import graph_capture
from vllm.model_executor.custom_op import CustomOp from vllm.model_executor.custom_op import CustomOp
from sglang.srt.layers.flashinfer_utils import update_flashinfer_indices
from sglang.srt.layers.logits_processor import ( from sglang.srt.layers.logits_processor import (
LogitsMetadata, LogitsMetadata,
LogitsProcessor, LogitsProcessor,
...@@ -32,11 +33,7 @@ from sglang.srt.layers.logits_processor import ( ...@@ -32,11 +33,7 @@ from sglang.srt.layers.logits_processor import (
) )
from sglang.srt.layers.sampler import SampleOutput from sglang.srt.layers.sampler import SampleOutput
from sglang.srt.managers.schedule_batch import ScheduleBatch from sglang.srt.managers.schedule_batch import ScheduleBatch
from sglang.srt.model_executor.forward_batch_info import ( from sglang.srt.model_executor.forward_batch_info import ForwardMode, InputMetadata
ForwardMode,
InputMetadata,
update_flashinfer_indices,
)
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.utils import monkey_patch_vllm_all_gather from sglang.srt.utils import monkey_patch_vllm_all_gather
......
...@@ -22,8 +22,8 @@ from typing import TYPE_CHECKING, List ...@@ -22,8 +22,8 @@ from typing import TYPE_CHECKING, List
import numpy as np import numpy as np
import torch import torch
import triton
import triton.language as tl from sglang.srt.layers.flashinfer_utils import update_flashinfer_indices
if TYPE_CHECKING: if TYPE_CHECKING:
from sglang.srt.managers.schedule_batch import ScheduleBatch from sglang.srt.managers.schedule_batch import ScheduleBatch
...@@ -39,16 +39,21 @@ class ForwardMode(IntEnum): ...@@ -39,16 +39,21 @@ class ForwardMode(IntEnum):
EXTEND = auto() EXTEND = auto()
# Decode one token. # Decode one token.
DECODE = auto() DECODE = auto()
# Contains both PREFILL and EXTEND.
MIXED = auto()
def is_prefill(self): def is_prefill(self):
return self == ForwardMode.PREFILL return self == ForwardMode.PREFILL
def is_extend(self): def is_extend(self):
return self == ForwardMode.EXTEND return self == ForwardMode.EXTEND or self == ForwardMode.MIXED
def is_decode(self): def is_decode(self):
return self == ForwardMode.DECODE return self == ForwardMode.DECODE
def is_mixed(self):
return self == ForwardMode.MIXED
@dataclass @dataclass
class InputMetadata: class InputMetadata:
...@@ -270,192 +275,3 @@ class InputMetadata: ...@@ -270,192 +275,3 @@ class InputMetadata:
model_runner.flashinfer_decode_wrapper, model_runner.flashinfer_decode_wrapper,
flashinfer_use_ragged, flashinfer_use_ragged,
) )
@triton.jit
def create_flashinfer_kv_indices_triton(
req_to_token_ptr, # [max_batch, max_context_len]
req_pool_indices_ptr,
page_kernel_lens_ptr,
kv_indptr,
kv_start_idx,
max_context_len,
kv_indices_ptr,
):
BLOCK_SIZE: tl.constexpr = 512
pid = tl.program_id(axis=0)
req_pool_index = tl.load(req_pool_indices_ptr + pid)
kv_indices_offset = tl.load(kv_indptr + pid)
kv_start = 0
kv_end = 0
if kv_start_idx:
kv_start = tl.load(kv_start_idx + pid).to(tl.int32)
kv_end = kv_start
kv_end += tl.load(page_kernel_lens_ptr + pid).to(tl.int32)
req_to_token_ptr += req_pool_index * max_context_len
kv_indices_ptr += kv_indices_offset
ld_offset = kv_start + tl.arange(0, BLOCK_SIZE)
st_offset = tl.arange(0, BLOCK_SIZE)
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
for _ in range(num_loop):
mask = ld_offset < kv_end
data = tl.load(req_to_token_ptr + ld_offset, mask=mask)
tl.store(kv_indices_ptr + st_offset, data, mask=mask)
ld_offset += BLOCK_SIZE
st_offset += BLOCK_SIZE
def update_flashinfer_indices(
forward_mode,
model_runner,
req_pool_indices,
seq_lens,
prefix_lens,
flashinfer_decode_wrapper=None,
flashinfer_use_ragged=False,
):
"""Init auxiliary variables for FlashInfer attention backend."""
num_qo_heads = model_runner.model_config.num_attention_heads // model_runner.tp_size
num_kv_heads = model_runner.model_config.get_num_kv_heads(model_runner.tp_size)
head_dim = model_runner.model_config.head_dim
batch_size = len(req_pool_indices)
if model_runner.sliding_window_size is None:
if flashinfer_use_ragged:
paged_kernel_lens = prefix_lens
else:
paged_kernel_lens = seq_lens
kv_indptr = torch.zeros((batch_size + 1,), dtype=torch.int32, device="cuda")
kv_indptr[1:] = torch.cumsum(paged_kernel_lens, dim=0)
kv_indices = torch.empty(kv_indptr[-1], dtype=torch.int32, device="cuda")
create_flashinfer_kv_indices_triton[(batch_size,)](
model_runner.req_to_token_pool.req_to_token,
req_pool_indices,
paged_kernel_lens,
kv_indptr,
None,
model_runner.req_to_token_pool.req_to_token.size(1),
kv_indices,
)
kv_last_page_len = torch.ones((batch_size,), dtype=torch.int32, device="cuda")
if forward_mode.is_decode():
# CUDA graph uses different flashinfer_decode_wrapper
if flashinfer_decode_wrapper is None:
flashinfer_decode_wrapper = model_runner.flashinfer_decode_wrapper
flashinfer_decode_wrapper.end_forward()
flashinfer_decode_wrapper.begin_forward(
kv_indptr,
kv_indices,
kv_last_page_len,
num_qo_heads,
num_kv_heads,
head_dim,
1,
data_type=model_runner.kv_cache_dtype,
q_data_type=model_runner.dtype,
)
else:
# extend part
qo_indptr = torch.zeros((batch_size + 1,), dtype=torch.int32, device="cuda")
qo_indptr[1:] = torch.cumsum(seq_lens - prefix_lens, dim=0)
if flashinfer_use_ragged:
model_runner.flashinfer_prefill_wrapper_ragged.end_forward()
model_runner.flashinfer_prefill_wrapper_ragged.begin_forward(
qo_indptr,
qo_indptr,
num_qo_heads,
num_kv_heads,
head_dim,
)
# cached part
model_runner.flashinfer_prefill_wrapper_paged.end_forward()
model_runner.flashinfer_prefill_wrapper_paged.begin_forward(
qo_indptr,
kv_indptr,
kv_indices,
kv_last_page_len,
num_qo_heads,
num_kv_heads,
head_dim,
1,
)
else:
# window attention use paged only
kv_last_page_len = torch.ones((batch_size,), dtype=torch.int32, device="cuda")
for wrapper_id in range(2):
if wrapper_id == 0:
if forward_mode.is_decode():
paged_kernel_lens = torch.minimum(
seq_lens, torch.tensor(model_runner.sliding_window_size + 1)
)
else:
paged_kernel_lens = torch.minimum(
seq_lens,
torch.tensor(model_runner.sliding_window_size)
+ seq_lens
- prefix_lens,
)
else:
paged_kernel_lens = seq_lens
kv_start_idx = seq_lens - paged_kernel_lens
kv_indptr = torch.zeros((batch_size + 1,), dtype=torch.int32, device="cuda")
kv_indptr[1:] = torch.cumsum(paged_kernel_lens, dim=0)
kv_indices = torch.empty(kv_indptr[-1], dtype=torch.int32, device="cuda")
create_flashinfer_kv_indices_triton[(batch_size,)](
model_runner.req_to_token_pool.req_to_token,
req_pool_indices,
paged_kernel_lens,
kv_indptr,
kv_start_idx,
model_runner.req_to_token_pool.req_to_token.size(1),
kv_indices,
)
if forward_mode.is_decode():
# CUDA graph uses different flashinfer_decode_wrapper
if flashinfer_decode_wrapper is None:
flashinfer_decode_wrapper = model_runner.flashinfer_decode_wrapper
flashinfer_decode_wrapper[wrapper_id].end_forward()
flashinfer_decode_wrapper[wrapper_id].begin_forward(
kv_indptr,
kv_indices,
kv_last_page_len,
num_qo_heads,
num_kv_heads,
head_dim,
1,
data_type=model_runner.kv_cache_dtype,
q_data_type=model_runner.dtype,
)
else:
# extend part
qo_indptr = torch.zeros(
(batch_size + 1,), dtype=torch.int32, device="cuda"
)
qo_indptr[1:] = torch.cumsum(seq_lens - prefix_lens, dim=0)
model_runner.flashinfer_prefill_wrapper_paged[wrapper_id].end_forward()
model_runner.flashinfer_prefill_wrapper_paged[wrapper_id].begin_forward(
qo_indptr,
kv_indptr,
kv_indices,
kv_last_page_len,
num_qo_heads,
num_kv_heads,
head_dim,
1,
)
...@@ -4,9 +4,7 @@ import unittest ...@@ -4,9 +4,7 @@ import unittest
import numpy as np import numpy as np
import torch import torch
from sglang.srt.model_executor.forward_batch_info import ( from sglang.srt.layers.flashinfer_utils import create_flashinfer_kv_indices_triton
create_flashinfer_kv_indices_triton,
)
class TestCreateKvIndices(unittest.TestCase): class TestCreateKvIndices(unittest.TestCase):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment