Commit 143ec5f3 authored by lizhigong's avatar lizhigong Committed by maxiao1
Browse files

adaptation w4A8 quantization

(cherry picked from commit 848c5b82)
parent 67510e01
......@@ -5,6 +5,15 @@ from typing import List, Optional, Tuple
import torch
from sglang.srt.utils import get_bool_env_var, is_hip, is_hpu, is_npu
try:
from lmslim import quant_ops
from lmslim import quant_tools
except Exception:
print("INFO: Please install lmslim if you want to infer gptq or awq or w8a8 model.\n")
try:
import lightop
except Exception:
print("INFO: Please install lightop if you want to infer awq of marlin.\n")
logger = logging.getLogger(__name__)
use_vllm_custom_allreduce = get_bool_env_var(
......@@ -175,3 +184,25 @@ def mscclpp_allreduce(
context: int, inp: torch.Tensor, out: torch.Tensor, nthreads: int, nblocks: int
) -> None:
return sgl_kernel.allreduce.mscclpp_allreduce(context, inp, out, nthreads, nblocks)
def triton_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
best_config:Optional[list] = None) -> torch.Tensor:
return quant_ops.triton_scaled_mm(a, b,scale_a,scale_b,out_dtype,bias,best_config)
def triton_int8_gemm_helper(m: int,
n: int,
k: int,
per_token_act_quant: bool,
per_out_channel_weight_quant: bool,
use_bias: bool,
out_dtype: type[torch.dtype] = torch.float16,
device: str = "cuda:0",
best_config:Optional[list] = None,
repeat:Optional[int] = 2):
return quant_tools.triton_int8_gemm_helper(m,n,k,per_token_act_quant,per_out_channel_weight_quant,use_bias,out_dtype,device,best_config,repeat)
\ No newline at end of file
......@@ -16,6 +16,7 @@ from lmslim.layers.gemm.int8_utils import (
per_token_quant_int8)
from sglang.srt import _custom_ops as ops
from vllm.utils import W8a8GetCacheJSON
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
import os
......@@ -343,6 +344,12 @@ class SlimQuantW4A8Int8MoEMethod:
layer.w2_weight_scale.data, requires_grad=False
)
def create_moe_runner(
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
):
self.moe_runner_config = moe_runner_config
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
def apply(
self,
layer: torch.nn.Module,
......
from typing import Any, Callable, Dict, List, Optional
from sglang.srt.layers.moe.token_dispatcher.base import CombineInput
from sglang.srt.layers.moe.token_dispatcher.standard import StandardCombineInput, StandardDispatchOutput
import torch
from sglang.srt import _custom_ops as ops
from sglang.srt.utils import set_weight_attrs
......@@ -9,6 +11,7 @@ from sglang.srt.layers.quantization import QuantizationConfig
from sglang.srt.layers.quantization.w4a8_utils import w4a8_weight_repack_impl
from sglang.srt.layers.quantization.base_config import (FusedMoEMethodBase, QuantizeMethodBase)
from sglang.srt.layers.quantization.slimquant_w4a8 import SlimQuantW4A8Int8LinearMethod
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
try:
from lmslim.layers.fused_moe.fuse_moe_w4a8_marlin import fused_experts_impl_w4a8_marlin
......@@ -146,13 +149,13 @@ class SlimQuantW4A8Int8MarlinMoEMethod:
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
tp_size = get_tensor_model_parallel_world_size()
intermediate_size = intermediate_size_per_partition
# WEIGHTS
w13_weight = torch.nn.Parameter(
torch.empty(
......@@ -205,51 +208,28 @@ class SlimQuantW4A8Int8MarlinMoEMethod:
layer.w13_weight = Parameter(w4a8_weight_repack_impl(layer.w13_weight), requires_grad=False)
layer.w2_weight = Parameter(w4a8_weight_repack_impl(layer.w2_weight), requires_grad=False)
def create_moe_runner(
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
):
self.moe_runner_config = moe_runner_config
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
use_nn_moe: Optional[bool] = False,
routed_scaling_factor: Optional[float] = None,
use_fused_gate: Optional[bool] = False,
**_
) -> torch.Tensor:
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `SlimQuantW4A8Int8MarlinMoEMethod` yet.")
# Expert selection
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
routed_scaling_factor=routed_scaling_factor,
use_fused_gate=use_fused_gate
dispatch_output: StandardDispatchOutput,
) -> CombineInput:
x = dispatch_output.hidden_states
topk_output = dispatch_output.topk_output
from sglang.srt.layers.moe.topk import apply_topk_weights_cpu
topk_weights, topk_ids, _ = topk_output
x, topk_weights = apply_topk_weights_cpu(
self.moe_runner_config.apply_router_weight_on_input, topk_weights, x
)
workspace, global_reduce_buffer = MarlinMoeWorkspace(x.device).get_buffers()
return fused_experts_impl_w4a8_marlin(
output = fused_experts_impl_w4a8_marlin(
x,
layer.w13_weight,
layer.w2_weight,
......@@ -260,13 +240,79 @@ class SlimQuantW4A8Int8MarlinMoEMethod:
inplace=True,
use_int4_w4a8=True,
per_channel_quant=True,
activation=activation,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
activation=layer.moe_runner_config.activation,
expert_map=layer.expert_map_gpu,
apply_router_weight_on_input=self.moe_runner_config.apply_router_weight_on_input,
global_num_experts=layer.moe_runner_config.num_experts,
w1_scale=(layer.w13_weight_scale),
w2_scale=(layer.w2_weight_scale),
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
use_nn_moe=use_nn_moe,
use_nn_moe=False,
)
return StandardCombineInput(hidden_states=output)
# def _apply(
# self,
# layer: torch.nn.Module,
# x: torch.Tensor,
# router_logits: torch.Tensor,
# top_k: int,
# #renormalize: bool,
# #use_grouped_topk: bool = False,
# topk_group: Optional[int] = None,
# num_expert_group: Optional[int] = None,
# global_num_experts: int = -1,
# expert_map: Optional[torch.Tensor] = None,
# custom_routing_function: Optional[Callable] = None,
# scoring_func: str = "softmax",
# e_score_correction_bias: Optional[torch.Tensor] = None,
# apply_router_weight_on_input: bool = False,
# activation: str = "silu",
# enable_eplb: bool = False,
# use_nn_moe: Optional[bool] = False,
# routed_scaling_factor: Optional[float] = None,
# use_fused_gate: Optional[bool] = False,
# **_
# ) -> torch.Tensor:
# from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
# from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
# if enable_eplb:
# raise NotImplementedError(
# "EPLB not supported for `SlimQuantW4A8Int8MarlinMoEMethod` yet.")
# # Expert selection
# topk_weights, topk_ids = FusedMoE.select_experts(
# hidden_states=x,
# router_logits=router_logits,
# #use_grouped_topk=use_grouped_topk,
# top_k=top_k,
# #renormalize=renormalize,
# topk_group=topk_group,
# num_expert_group=num_expert_group,
# custom_routing_function=custom_routing_function,
# scoring_func=scoring_func,
# e_score_correction_bias=e_score_correction_bias,
# routed_scaling_factor=routed_scaling_factor,
# use_fused_gate=use_fused_gate
# )
# workspace, global_reduce_buffer = MarlinMoeWorkspace(x.device).get_buffers()
# return fused_experts_impl_w4a8_marlin(
# x,
# layer.w13_weight,
# layer.w2_weight,
# topk_weights=topk_weights,
# topk_ids=topk_ids,
# workspace=workspace,
# global_reduce_buffer=global_reduce_buffer,
# inplace=True,
# use_int4_w4a8=True,
# per_channel_quant=True,
# activation=activation,
# expert_map=expert_map,
# apply_router_weight_on_input=apply_router_weight_on_input,
# global_num_experts=global_num_experts,
# w1_scale=(layer.w13_weight_scale),
# w2_scale=(layer.w2_weight_scale),
# a1_scale=layer.w13_input_scale,
# a2_scale=layer.w2_input_scale,
# use_nn_moe=use_nn_moe,
# )
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment