Unverified Commit 14269198 authored by Chunan Zeng's avatar Chunan Zeng Committed by GitHub
Browse files

[Benchmark] tilelang vs deepgemm vs w8a8_block_fp8_matmul (#4735)

parent 9b7cf9ee
import itertools
from typing import Tuple
import deep_gemm
import numpy as np
import tilelang
import tilelang.language as T
import torch
import triton
import triton.language as tl
from deep_gemm import ceil_div, get_col_major_tma_aligned_tensor
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
w8a8_block_fp8_matmul as vllm_w8a8_block_fp8_matmul,
......@@ -14,6 +13,84 @@ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
from sglang.srt.layers.quantization.fp8_kernel import w8a8_block_fp8_matmul
# Adapted from https://github.com/tile-ai/tilelang/blob/a8cfdce92795cb861c9033573534653ee040b5ed/examples/deepseek_deepgemm/example_deepgemm_fp8_2xAcc.py#L1
def tl_gemm(
M,
N,
K,
in_dtype,
out_dtype,
accum_dtype,
):
assert in_dtype in [
"e4m3_float8",
], "Currently only e4m3_float8 is supported"
assert out_dtype in [
"bfloat16",
"float16",
], "Currently only bfloat16 and float16 are supported"
TILE_SIZE = (128, 128, 128)
block_M = TILE_SIZE[0]
block_N = TILE_SIZE[1]
block_K = TILE_SIZE[2]
A_shape = (M, K)
Scales_A_shape = (M, T.ceildiv(K, block_K))
B_shape = (N, K)
Scales_B_shape = (T.ceildiv(N, block_N), T.ceildiv(K, block_K))
A_shared_shape = (block_M, block_K)
B_shared_shape = (block_N, block_K)
C_shared_shape = (block_M, block_N)
@T.prim_func
def main(
A: T.Buffer(A_shape, in_dtype),
scales_a: T.Buffer(Scales_A_shape, "float32"),
B: T.Buffer(B_shape, in_dtype),
scales_b: T.Buffer(Scales_B_shape, "float32"),
C: T.Buffer((M, N), out_dtype),
):
with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
bx,
by,
):
A_shared = T.alloc_shared(A_shared_shape, in_dtype)
B_shared = T.alloc_shared(B_shared_shape, in_dtype)
C_shared = T.alloc_shared(C_shared_shape, out_dtype)
Scale_C_shared = T.alloc_shared((block_M), "float32")
C_local = T.alloc_fragment(C_shared_shape, accum_dtype)
C_local_accum = T.alloc_fragment(C_shared_shape, accum_dtype)
# Improve L2 Cache
T.use_swizzle(panel_size=10)
T.clear(C_local)
T.clear(C_local_accum)
K_iters = T.ceildiv(K, block_K)
for k in T.Pipelined(K_iters, num_stages=4):
# Load A into shared memory
T.copy(A[by * block_M, k * block_K], A_shared)
# Load B into shared memory
T.copy(B[bx * block_N, k * block_K], B_shared)
# Load scale into shared memory
Scale_B = scales_b[bx, k]
for i in T.Parallel(block_M):
Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B
T.gemm(A_shared, B_shared, C_local, transpose_B=True)
# Promote to enable 2xAcc
for i, j in T.Parallel(block_M, block_N):
C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
T.clear(C_local)
# TMA store
T.copy(C_local_accum, C_shared)
T.copy(C_shared, C[by * block_M, bx * block_N])
return main
def per_token_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
assert x.dim() == 2 and x.size(1) % 128 == 0
m, n = x.shape
......@@ -114,35 +191,42 @@ def calculate_diff(m: int, n: int, k: int):
out_sglang = fp8_gemm_sglang(
x_fp8.clone(), x_scale.clone(), y_fp8.clone(), y_scale.clone(), m, n, k
)
out_vllm = fp8_gemm_vllm(
x_fp8.clone(), x_scale.clone(), y_fp8.clone(), y_scale.clone(), m, n, k
tilelang_func = tl_gemm(m, n, k, "e4m3_float8", "bfloat16", "float32")
tilelang_kernel = tilelang.compile(tilelang_func, out_idx=[-1])
out_tilelang = tilelang_kernel(
x_fp8.clone(), x_scale.clone(), y_fp8.clone(), y_scale.clone()
)
diff_sglang_deepgemm = torch.abs(out_deepgemm - out_sglang).mean().item()
diff_vllm_deepgemm = torch.abs(out_deepgemm - out_vllm).mean().item()
diff_vllm_sglang = torch.abs(out_vllm - out_sglang).mean().item()
diff_tilelang_deepgemm = torch.abs(out_deepgemm - out_tilelang).mean().item()
diff_tilelang_sglang = torch.abs(out_tilelang - out_sglang).mean().item()
print(f"Shape m={m}, n={n}, k={k}:")
print(f"DeepGEMM output: {out_deepgemm[0, 0:5]}")
print(f"SGLang output: {out_sglang[0, 0:5]}")
print(f"vLLM output: {out_vllm[0, 0:5]}")
print(f"TileLang output: {out_tilelang[0, 0:5]}")
print(f"Mean absolute difference (SGLang-DeepGEMM): {diff_sglang_deepgemm}")
print(f"Mean absolute difference (vLLM-DeepGEMM): {diff_vllm_deepgemm}")
print(f"Mean absolute difference (vLLM-SGLang): {diff_vllm_sglang}")
print(f"Mean absolute difference (TileLang-DeepGEMM): {diff_tilelang_deepgemm}")
print(f"Mean absolute difference (TileLang-SGLang): {diff_tilelang_sglang}")
sglang_deepgemm_match = torch.allclose(
out_deepgemm, out_sglang, atol=1e-2, rtol=1e-2
)
vllm_deepgemm_match = torch.allclose(out_deepgemm, out_vllm, atol=1e-2, rtol=1e-2)
vllm_sglang_match = torch.allclose(out_vllm, out_sglang, atol=1e-2, rtol=1e-2)
tilelang_deepgemm_match = torch.allclose(
out_deepgemm, out_tilelang, atol=1e-2, rtol=1e-2
)
tilelang_sglang_match = torch.allclose(
out_tilelang, out_sglang, atol=1e-2, rtol=1e-2
)
if sglang_deepgemm_match and vllm_deepgemm_match and vllm_sglang_match:
if sglang_deepgemm_match and tilelang_deepgemm_match and tilelang_sglang_match:
print("✅ All implementations match\n")
else:
print("❌ Some implementations differ:")
print(f" - SGLang vs DeepGEMM: {'✅' if sglang_deepgemm_match else '❌'}")
print(f" - vLLM vs DeepGEMM: {'✅' if vllm_deepgemm_match else '❌'}")
print(f" - vLLM vs SGLang: {'✅' if vllm_sglang_match else '❌'}\n")
print(f" - TileLang vs DeepGEMM: {'✅' if tilelang_deepgemm_match else '❌'}")
print(f" - TileLang vs SGLang: {'✅' if tilelang_sglang_match else '❌'}\n")
def get_weight_shapes(tp_size):
......@@ -198,8 +282,8 @@ def get_benchmark(tp_size):
x_names=["m", "n", "k", "tp_size"],
x_vals=[list(config) for config in all_configs],
line_arg="provider",
line_vals=["deepgemm", "sglang", "vllm"],
line_names=["DeepGEMM", "SGLang", "vLLM"],
line_vals=["deepgemm", "sglang", "tilelang"],
line_names=["DeepGEMM", "SGLang", "TileLang"],
styles=[("blue", "-"), ("red", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"fp8-gemm-performance-comparison-tp{tp_size}",
......@@ -244,16 +328,15 @@ def get_benchmark(tp_size):
),
quantiles=quantiles,
)
else: # vllm
else: # tilelang
tilelang_func = tl_gemm(m, n, k, "e4m3_float8", "bfloat16", "float32")
tilelang_kernel = tilelang.compile(tilelang_func, out_idx=[-1])
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: fp8_gemm_vllm(
lambda: tilelang_kernel(
x_fp8.clone(),
x_scale.clone(),
y_fp8.clone(),
y_scale.clone(),
m,
n,
k,
),
quantiles=quantiles,
)
......@@ -282,6 +365,7 @@ if __name__ == "__main__":
parser.add_argument(
"--run_correctness",
action="store_true",
default=True,
help="Whether to run correctness test",
)
parser.add_argument(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment