Unverified Commit 0b9dfba7 authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Support dispatch low latency (#10263)


Co-authored-by: default avatarKaixi Hou <4001424+kaixih@users.noreply.github.com>
parent 6a290034
......@@ -31,6 +31,10 @@ from sglang.srt.layers.quantization.fp8_kernel import (
is_fp8_fnuz,
sglang_per_token_group_quant_fp8,
)
from sglang.srt.layers.quantization.modelopt_quant import (
CUTEDSL_MOE_NVFP4_DISPATCH,
ModelOptNvFp4FusedMoEMethod,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.offloader import get_offloader
......@@ -453,6 +457,13 @@ class DeepEPMoE(EPMoE):
topk_idx=topk_idx,
topk_weights=topk_weights,
forward_batch=forward_batch,
input_global_scale=(
self.w13_input_scale_quant
if isinstance(self.quant_method, ModelOptNvFp4FusedMoEMethod)
and self.quant_method.enable_flashinfer_cutedsl_moe
and CUTEDSL_MOE_NVFP4_DISPATCH
else None
),
)
def moe_impl(self, dispatch_output: DispatchOutput):
......
from typing import Any, Dict, Optional
from typing import Any, Dict, Optional, Union
import torch
from flashinfer.cute_dsl.blockscaled_gemm import grouped_gemm_nt_masked
......@@ -20,7 +20,7 @@ def get_cute_dtype(input: torch.Tensor) -> str:
def flashinfer_cutedsl_moe_masked(
hidden_states: torch.Tensor,
hidden_states: Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]],
input_global_scale: torch.Tensor,
w1: torch.Tensor,
w1_blockscale: torch.Tensor,
......@@ -36,7 +36,9 @@ def flashinfer_cutedsl_moe_masked(
kernels.
Args:
hidden_states (torch.Tensor): [num_experts, m, k], bf16
hidden_states: Either of the following case
* torch.Tensor: [num_experts, m, k], bf16
* tuple[torch.Tensor, torch.Tensor]: [num_experts, m, k // 2], uint8, [num_experts, m, k // 16], float8_e4m3fn
input_global_scale (torch.Tensor): (l,)
w1 (torch.Tensor): fp4 weights, [l, 2 * n, k // 2], uint8
w1_blockscale (torch.Tensor): blockscale factors, e4m3,
......@@ -48,13 +50,10 @@ def flashinfer_cutedsl_moe_masked(
masked_m (torch.Tensor): Masked dimension indices
Notes:
- Assumes max(masked_m) <= m.
- Assumes max(masked_m) == m.
"""
# === Assertions on dtypes ===
assert (
input_global_scale.dtype == torch.float32
), f"input_global_scale must be float32, got {input_global_scale.dtype}"
assert w1.dtype == torch.uint8, f"w1 must be uint8 (fp4 packed), got {w1.dtype}"
assert (
w1_blockscale.dtype == torch.float8_e4m3fn
......@@ -75,7 +74,31 @@ def flashinfer_cutedsl_moe_masked(
# === Assertions on shapes ===
n = w2.shape[-1] * 2 # intermediate dimension
num_experts, m, k = hidden_states.shape
if isinstance(hidden_states, tuple):
assert (
input_global_scale is None
), "input_global_scale is needed when input needs quant"
a_q = hidden_states[0].view(torch.uint8)
a_q_sf = hidden_states[1].view(torch.float8_e4m3fn)
m, k_by_2, num_experts = a_q.shape
k = k_by_2 * 2
else:
num_experts, m, k = hidden_states.shape
assert (
input_global_scale.dtype == torch.float32
), f"input_global_scale must be float32, got {input_global_scale.dtype}"
assert input_global_scale.shape == (
num_experts,
), f"input_global_scale must be (l,), got {input_global_scale.shape}"
a_q, a_q_sf = scaled_fp4_grouped_quant(
hidden_states,
input_global_scale,
masked_m,
)
assert w1.shape[-2] == 2 * n, f"w1 last-2 dim must be 2*n, got {w1.shape}"
assert (
......@@ -85,10 +108,6 @@ def flashinfer_cutedsl_moe_masked(
k,
n // 2,
), f"w2 shape mismatch, got {w2.shape[-2:]}, expected {(k, n//2)}"
assert input_global_scale.shape == (
num_experts,
), f"input_global_scale must be (l,), got {input_global_scale.shape}"
assert w1_alpha.shape == (
num_experts,
), f"w1_alpha must be (l,), got {w1_alpha.shape}"
......@@ -99,27 +118,21 @@ def flashinfer_cutedsl_moe_masked(
num_experts,
), f"w2_alpha must be (l,), got {w2_alpha.shape}"
aq, aq_sf = scaled_fp4_grouped_quant(
hidden_states,
input_global_scale,
masked_m,
)
# TODO(kaixih@nvidia): dtype should be based on inputs.
gateup_output = torch.empty(
(num_experts, m, n * 2), dtype=hidden_states.dtype, device=aq.device
(num_experts, m, n * 2), dtype=torch.bfloat16, device=a_q.device
)
gateup_output = gateup_output.permute(1, 2, 0) # requirement of kernel
sf_vec_size = 16
assert aq_sf.dtype == torch.float8_e4m3fn
assert aq.dtype == torch.uint8
assert a_q_sf.dtype == torch.float8_e4m3fn
assert a_q.dtype == torch.uint8
ab_dtype = "float4_e2m1fn"
sf_dtype = "float8_e4m3fn"
c_dtype = get_cute_dtype(hidden_states)
c_dtype = "bfloat16"
# Gemm1
grouped_gemm_nt_masked(
(aq, aq_sf),
(a_q, a_q_sf),
(w1.permute(1, 2, 0), w1_blockscale),
gateup_output,
masked_m,
......@@ -139,7 +152,7 @@ def flashinfer_cutedsl_moe_masked(
)
# Gemm2
out = torch.empty_like(hidden_states)
out = torch.empty((num_experts, m, k), dtype=torch.bfloat16, device=a_q.device)
out = out.permute(1, 2, 0) # requirement of kernel
grouped_gemm_nt_masked(
(diq, diq_sf),
......
......@@ -296,6 +296,7 @@ class _DeepEPDispatcherImplBase:
def dispatch_a(
self,
hidden_states: torch.Tensor,
input_global_scale: Optional[torch.Tensor],
topk_idx: torch.Tensor,
topk_weights: torch.Tensor,
):
......@@ -329,6 +330,7 @@ class _DeepEPDispatcherImplNormal(_DeepEPDispatcherImplBase):
def dispatch_a(
self,
hidden_states: torch.Tensor,
input_global_scale: Optional[torch.Tensor],
topk_idx: torch.Tensor,
topk_weights: torch.Tensor,
):
......@@ -505,6 +507,7 @@ class _DeepEPDispatcherImplLowLatency(_DeepEPDispatcherImplBase):
def dispatch_a(
self,
hidden_states: torch.Tensor,
input_global_scale: Optional[torch.Tensor],
topk_idx: torch.Tensor,
topk_weights: torch.Tensor,
):
......@@ -516,9 +519,8 @@ class _DeepEPDispatcherImplLowLatency(_DeepEPDispatcherImplBase):
) // self.num_experts
hidden_states, masked_m, event, hook = self._dispatch_core(
hidden_states,
input_global_scale,
topk_idx,
# TODO(shuw): pending https://github.com/deepseek-ai/DeepEP/pull/341
use_fp8=not get_bool_env_var("SGLANG_DEEPEP_BF16_DISPATCH"),
)
return (
hidden_states,
......@@ -558,9 +560,15 @@ class _DeepEPDispatcherImplLowLatency(_DeepEPDispatcherImplBase):
def _dispatch_core(
self,
hidden_states: torch.Tensor,
input_global_scale: Optional[torch.Tensor],
topk_idx: torch.Tensor,
use_fp8: bool = False,
):
use_nvfp4 = use_fp8 = False
if input_global_scale is not None:
use_nvfp4 = True
elif not get_bool_env_var("SGLANG_DEEPEP_BF16_DISPATCH"):
use_fp8 = True
buffer = self._get_buffer()
packed_recv_hidden, packed_recv_count, self.handle, event, hook = (
buffer.low_latency_dispatch(
......@@ -569,6 +577,12 @@ class _DeepEPDispatcherImplLowLatency(_DeepEPDispatcherImplBase):
self.num_max_dispatch_tokens_per_rank,
self.num_experts,
use_fp8=use_fp8,
**(dict(use_nvfp4=True) if use_nvfp4 else dict()),
**(
dict(x_global_scale=input_global_scale)
if input_global_scale is not None
else dict()
),
async_finish=not self.return_recv_hook,
return_recv_hook=self.return_recv_hook,
round_scale=deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
......@@ -682,6 +696,7 @@ class DeepEPDispatcher(BaseDispatcher):
def dispatch_a(
self,
hidden_states: torch.Tensor,
input_global_scale: Optional[torch.Tensor],
topk_idx: torch.Tensor,
topk_weights: torch.Tensor,
forward_batch: ForwardBatch,
......@@ -689,6 +704,7 @@ class DeepEPDispatcher(BaseDispatcher):
self._update_stage(_Stage.INITIAL, _Stage.AFTER_DISPATCH_A)
inner_state = self._get_impl(forward_batch).dispatch_a(
hidden_states=hidden_states,
input_global_scale=input_global_scale,
topk_idx=topk_idx,
topk_weights=topk_weights,
)
......
......@@ -80,6 +80,10 @@ CUTEDSL_MOE_SCALAR_INPUT_SCALE = get_bool_env_var(
USE_CUTLASS_BACKEND_FOR_FP4_GEMM = get_bool_env_var(
"SGLANG_USE_CUTLASS_BACKEND_FOR_FP4_GEMM"
)
# TODO make it true by default when the DeepEP PR is merged
CUTEDSL_MOE_NVFP4_DISPATCH = get_bool_env_var(
"SGLANG_CUTEDSL_MOE_NVFP4_DISPATCH", "false"
)
# Supported activation schemes for the current configuration
ACTIVATION_SCHEMES = ["static"]
......@@ -1234,6 +1238,10 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
w13_input_scale = _slice_scale(w13_input_scale)
w2_input_scale = _slice_scale(w2_input_scale)
if CUTEDSL_MOE_NVFP4_DISPATCH:
assert torch.all(w13_input_scale == w13_input_scale[0])
w13_input_scale = w13_input_scale[0]
else:
w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
w2_input_scale = layer.w2_input_scale
......@@ -1476,7 +1484,9 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
out = flashinfer_cutedsl_moe_masked(
hidden_states=x,
input_global_scale=layer.w13_input_scale_quant,
input_global_scale=(
None if CUTEDSL_MOE_NVFP4_DISPATCH else layer.w13_input_scale_quant
),
w1=layer.w13_weight,
w1_blockscale=layer.w13_blockscale_swizzled,
w1_alpha=layer.g1_alphas,
......
......@@ -896,6 +896,7 @@ class DeepseekV2MoE(nn.Module):
if self.ep_size > 1:
self.experts.deepep_dispatcher.dispatch_a(
hidden_states=state.hidden_states_mlp_input,
input_global_scale=None,
topk_idx=state.pop("topk_idx_local"),
topk_weights=state.pop("topk_weights_local"),
forward_batch=state.forward_batch,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment