After tuning, a configuration file (e.g., `E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json`) will be generated in the current directory. You can move this file to `sglang/srt/layers/fused_moe_triton/configs/triton_version` dir to use it in `sglang`.
After tuning, a configuration file (e.g., `E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json`) will be generated in the current directory. You can move this file to `sglang/srt/layers/fused_moe_triton/configs/triton_version` dir to use it in `sglang`.
**Note for EP mode**: When using Expert Parallelism (`--ep-size > 1`), `--tp-size` must be set to 1. The configuration file uses local expert count instead of total expert count. For example, with 64 total experts and EP=2, the config file will be named `E=32,N=640,device_name=...,dtype=...json`.
### Performance Comparison Tool
### Performance Comparison Tool
-`benchmark_vllm_vs_sglang_fused_moe_triton.py`: A tool for comparing the performance of fused MoE kernels between vllm and sglang implementations. Supports various model architectures and data types.
-`benchmark_vllm_vs_sglang_fused_moe_triton.py`: A tool for comparing the performance of fused MoE kernels between vllm and sglang implementations. Supports various model architectures and data types.