Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
00d25a7f
Unverified
Commit
00d25a7f
authored
Mar 10, 2025
by
Lianmin Zheng
Committed by
GitHub
Mar 10, 2025
Browse files
Fix quantization and nightly tests (#4258)
parent
1a5023e0
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
142 additions
and
70 deletions
+142
-70
python/sglang/srt/layers/moe/fused_moe_triton/fused_moe.py
python/sglang/srt/layers/moe/fused_moe_triton/fused_moe.py
+0
-1
python/sglang/srt/layers/quantization/__init__.py
python/sglang/srt/layers/quantization/__init__.py
+88
-68
python/sglang/srt/model_executor/model_runner.py
python/sglang/srt/model_executor/model_runner.py
+4
-0
python/sglang/test/test_utils.py
python/sglang/test/test_utils.py
+4
-1
test/srt/run_suite.py
test/srt/run_suite.py
+1
-0
test/srt/test_awq.py
test/srt/test_awq.py
+44
-0
test/srt/test_nightly_gsm8k_eval.py
test/srt/test_nightly_gsm8k_eval.py
+1
-0
No files found.
python/sglang/srt/layers/moe/fused_moe_triton/fused_moe.py
View file @
00d25a7f
...
...
@@ -23,7 +23,6 @@ from sglang.srt.utils import (
direct_register_custom_op
,
get_bool_env_var
,
get_device_name
,
is_cuda_available
,
is_hip
,
)
...
...
python/sglang/srt/layers/quantization/__init__.py
View file @
00d25a7f
# Adapted from https://raw.githubusercontent.com/vllm-project/vllm/v0.5.5/vllm/model_executor/layers/quantization/__init__.py
import
builtins
import
inspect
import
re
from
copy
import
deepcopy
from
typing
import
Callable
,
Dict
,
Optional
,
Type
,
Union
...
...
@@ -6,10 +8,7 @@ from typing import Callable, Dict, Optional, Type, Union
import
torch
from
vllm.model_executor.layers.quantization.aqlm
import
AQLMConfig
from
vllm.model_executor.layers.quantization.awq
import
AWQConfig
from
vllm.model_executor.layers.quantization.awq_marlin
import
(
AWQMarlinConfig
,
AWQMoEMethod
,
)
from
vllm.model_executor.layers.quantization.awq_marlin
import
AWQMarlinConfig
from
vllm.model_executor.layers.quantization.bitsandbytes
import
BitsAndBytesConfig
from
vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors
import
(
CompressedTensorsConfig
,
...
...
@@ -180,96 +179,117 @@ def gptq_get_quant_method(self, layer, prefix):
return
None
def
awq_get_quant_method
(
self
,
layer
,
prefix
):
from
vllm.model_executor.layers.quantization.awq
import
is_layer_skipped_awq
from
vllm.model_executor.layers.quantization.awq_marlin
import
(
AWQMarlinLinearMethod
,
AWQMoEMethod
,
)
original_isinstance
=
builtins
.
isinstance
from
sglang.srt.layers.linear
import
LinearBase
,
UnquantizedLinearMethod
from
sglang.srt.layers.moe.fused_moe_triton.layer
import
FusedMoE
from
sglang.srt.layers.vocab_parallel_embedding
import
ParallelLMHead
if
isinstance
(
layer
,
LinearBase
)
or
(
isinstance
(
layer
,
ParallelLMHead
)
and
self
.
lm_head_quantized
):
if
is_layer_skipped_awq
(
prefix
,
self
.
modules_to_not_convert
):
return
UnquantizedLinearMethod
()
return
AWQMarlinLinearMethod
(
self
)
elif
isinstance
(
layer
,
FusedMoE
):
return
AWQMoEMethod
(
self
)
return
None
def
monkey_patch_isinstance_for_vllm_base_layer
(
reverse
:
bool
=
False
):
"""
Patch isinstance so that the `get_quant_method` in vllm's QuantizationConfig
can recognize sglang layers
"""
if
reverse
:
builtins
.
isinstance
=
original_isinstance
return
original_awq_moe_method_apply
=
AWQMoEMethod
.
apply
def
awq_moe_method_apply
(
self
,
layer
:
torch
.
nn
.
Module
,
x
:
torch
.
Tensor
,
router_logits
:
torch
.
Tensor
,
top_k
:
int
,
renormalize
:
bool
,
use_grouped_topk
:
bool
=
False
,
topk_group
:
Optional
[
int
]
=
None
,
num_expert_group
:
Optional
[
int
]
=
None
,
custom_routing_function
:
Optional
[
Callable
]
=
None
,
scoring_func
:
str
=
"softmax"
,
e_score_correction_bias
:
Optional
[
torch
.
Tensor
]
=
None
,
**
kwargs
,
):
return
original_awq_moe_method_apply
(
self
,
layer
,
x
,
router_logits
,
top_k
,
renormalize
,
use_grouped_topk
,
topk_group
,
num_expert_group
,
custom_routing_function
,
scoring_func
,
e_score_correction_bias
,
)
def
patch_vllm_linear_base_isinstance
():
import
builtins
from
vllm.model_executor.layers.fused_moe
import
FusedMoE
from
vllm.model_executor.layers.linear
import
LinearBase
from
vllm.model_executor.layers.vocab_parallel_embedding
import
(
VocabParallelEmbedding
,
)
from
sglang.srt.layers.linear
import
LinearBase
as
PatchedLinearBase
original_isinstance
=
builtins
.
isinstance
from
sglang.srt.layers.moe.fused_moe_triton.layer
import
FusedMoE
as
PatchedFusedMoE
from
sglang.srt.layers.vocab_parallel_embedding
import
(
VocabParallelEmbedding
as
PatchedVocabParallelEmbedding
,
)
def
patched_isinstance
(
obj
,
classinfo
):
if
classinfo
is
LinearBase
:
return
original_isinstance
(
obj
,
PatchedLinearBase
)
if
classinfo
is
FusedMoE
:
return
original_isinstance
(
obj
,
PatchedFusedMoE
)
if
classinfo
is
VocabParallelEmbedding
:
return
original_isinstance
(
obj
,
PatchedVocabParallelEmbedding
)
return
original_isinstance
(
obj
,
classinfo
)
builtins
.
isinstance
=
patched_isinstance
def
apply_monkey_patches
():
def
monkey_patch_moe_apply
(
class_obj
:
"FusedMoEMethodBase"
):
"""
Monkey patch the apply function of vllm's FusedMoEMethodBase.
Convert sglang arguments to vllm arguments.
"""
original_apply
=
class_obj
.
apply
sig
=
inspect
.
signature
(
original_apply
)
param_names
=
list
(
sig
.
parameters
.
keys
())
has_correction_bias
=
"e_score_correction_bias"
in
param_names
def
new_apply
(
self
,
layer
:
torch
.
nn
.
Module
,
x
:
torch
.
Tensor
,
router_logits
:
torch
.
Tensor
,
top_k
:
int
,
renormalize
:
bool
,
use_grouped_topk
:
bool
,
topk_group
:
Optional
[
int
]
=
None
,
num_expert_group
:
Optional
[
int
]
=
None
,
custom_routing_function
:
Optional
[
Callable
]
=
None
,
correction_bias
:
Optional
[
torch
.
Tensor
]
=
None
,
activation
:
str
=
"silu"
,
inplace
:
bool
=
True
,
no_combine
:
bool
=
False
,
):
assert
activation
==
"silu"
assert
inplace
and
not
no_combine
kwargs
=
{
"self"
:
self
,
"layer"
:
layer
,
"x"
:
x
,
"router_logits"
:
router_logits
,
"top_k"
:
top_k
,
"renormalize"
:
renormalize
,
"use_grouped_topk"
:
use_grouped_topk
,
"topk_group"
:
topk_group
,
"num_expert_group"
:
num_expert_group
,
"custom_routing_function"
:
custom_routing_function
,
}
if
correction_bias
is
not
None
:
if
not
has_correction_bias
:
raise
ValueError
(
"Please increase the version of your vllm. Try `pip install vllm==0.7.2`"
)
kwargs
[
"e_score_correction_bias"
]
=
correction_bias
return
original_apply
(
**
kwargs
)
setattr
(
class_obj
,
"apply"
,
new_apply
)
def
monkey_patch_quant_configs
():
"""Apply all monkey patches in one place."""
from
vllm.model_executor.layers.quantization.awq_marlin
import
AWQMoEMethod
from
vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors_moe
import
(
CompressedTensorsW8A8Fp8MoEMethod
,
CompressedTensorsWNA16MoEMethod
,
)
from
vllm.model_executor.layers.quantization.gptq_marlin
import
GPTQMarlinMoEMethod
setattr
(
GPTQMarlinConfig
,
"get_quant_method"
,
gptq_get_quant_method
)
setattr
(
GPTQConfig
,
"get_quant_method"
,
gptq_get_quant_method
)
setattr
(
AWQMarlinConfig
,
"get_quant_method"
,
awq_get_quant_method
)
setattr
(
AWQMoEMethod
,
"apply"
,
awq_moe_method_apply
)
monkey_patch_moe_apply
(
AWQMoEMethod
)
monkey_patch_moe_apply
(
GPTQMarlinMoEMethod
)
monkey_patch_moe_apply
(
CompressedTensorsW8A8Fp8MoEMethod
)
monkey_patch_moe_apply
(
CompressedTensorsWNA16MoEMethod
)
patch_vllm_linear_base_isinstance
()
# Apply patches when module is imported
apply_monkey_patches
()
monkey_patch_quant_configs
()
__all__
=
[
"QuantizationConfig"
,
"get_quantization_config"
,
"QUANTIZATION_METHODS"
,
]
python/sglang/srt/model_executor/model_runner.py
View file @
00d25a7f
...
...
@@ -41,6 +41,7 @@ from sglang.srt.layers.dp_attention import (
initialize_dp_attention
,
)
from
sglang.srt.layers.logits_processor
import
LogitsProcessorOutput
from
sglang.srt.layers.quantization
import
monkey_patch_isinstance_for_vllm_base_layer
from
sglang.srt.layers.sampler
import
Sampler
from
sglang.srt.layers.torchao_utils
import
apply_torchao_config_to_model
from
sglang.srt.lora.lora_manager
import
LoRAManager
...
...
@@ -341,6 +342,8 @@ class ModelRunner:
# Load the model
# Remove monkey_patch when linear.py quant remove dependencies with vllm
monkey_patch_vllm_parallel_state
()
monkey_patch_isinstance_for_vllm_base_layer
()
with
self
.
memory_saver_adapter
.
region
():
self
.
model
=
get_model
(
model_config
=
self
.
model_config
,
...
...
@@ -348,6 +351,7 @@ class ModelRunner:
device_config
=
DeviceConfig
(
self
.
device
),
)
monkey_patch_vllm_parallel_state
(
reverse
=
True
)
monkey_patch_isinstance_for_vllm_base_layer
(
reverse
=
True
)
if
self
.
server_args
.
kv_cache_dtype
==
"fp8_e4m3"
:
if
self
.
server_args
.
quantization_param_path
is
not
None
:
...
...
python/sglang/test/test_utils.py
View file @
00d25a7f
...
...
@@ -36,12 +36,15 @@ DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instru
DEFAULT_MLA_MODEL_NAME_FOR_TEST
=
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST
=
"neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_REASONING_MODEL_NAME_FOR_TEST
=
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST
=
(
"hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
=
1000
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1
=
"meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2
=
"meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1
=
"neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2
=
"neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1
=
"hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1
=
"hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4
,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4
"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN
=
"Qwen/Qwen2.5-1.5B-Instruct"
DEFAULT_SMALL_VLM_MODEL_NAME
=
"Qwen/Qwen2-VL-2B"
...
...
test/srt/run_suite.py
View file @
00d25a7f
...
...
@@ -22,6 +22,7 @@ suites = {
TestFile
(
"models/test_reward_models.py"
,
83
),
TestFile
(
"models/test_gme_qwen_models.py"
,
45
),
TestFile
(
"test_abort.py"
,
51
),
TestFile
(
"test_awq.py"
),
TestFile
(
"test_block_int8.py"
,
22
),
TestFile
(
"test_chunked_prefill.py"
,
336
),
TestFile
(
"test_eagle_infer.py"
,
447
),
...
...
test/srt/test_awq.py
0 → 100644
View file @
00d25a7f
import
unittest
from
types
import
SimpleNamespace
from
sglang.srt.utils
import
kill_process_tree
from
sglang.test.run_eval
import
run_eval
from
sglang.test.test_utils
import
(
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST
,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
,
DEFAULT_URL_FOR_TEST
,
popen_launch_server
,
)
class
TestAWQ
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
cls
.
model
=
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST
cls
.
base_url
=
DEFAULT_URL_FOR_TEST
cls
.
process
=
popen_launch_server
(
cls
.
model
,
cls
.
base_url
,
timeout
=
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
,
other_args
=
[
"--trust-remote-code"
],
)
@
classmethod
def
tearDownClass
(
cls
):
kill_process_tree
(
cls
.
process
.
pid
)
def
test_mmlu
(
self
):
args
=
SimpleNamespace
(
base_url
=
self
.
base_url
,
model
=
self
.
model
,
eval_name
=
"mmlu"
,
num_examples
=
64
,
num_threads
=
32
,
)
metrics
=
run_eval
(
args
)
self
.
assertGreater
(
metrics
[
"score"
],
0.65
)
if
__name__
==
"__main__"
:
unittest
.
main
()
test/srt/test_nightly_gsm8k_eval.py
View file @
00d25a7f
...
...
@@ -38,6 +38,7 @@ MODEL_SCORE_THRESHOLDS = {
"neuralmagic/Qwen2-57B-A14B-Instruct-FP8"
:
0.82
,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
:
0.84
,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
:
0.83
,
"hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
:
0.60
,
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment