"vscode:/vscode.git/clone" did not exist on "bf4eb3e8e344dee0b9a620f5b294be569bbb4417"
tool_parser_benchmark.rs 39 KB
Newer Older
Chang Su's avatar
Chang Su committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
//! Comprehensive tool parser benchmark for measuring performance under various scenarios
//!
//! This benchmark tests:
//! - Single parser parsing performance
//! - Registry creation overhead
//! - Concurrent parsing with shared parsers
//! - Streaming vs complete parsing
//! - Different model formats (JSON, Mistral, Qwen, Pythonic, etc.)

use criterion::{black_box, criterion_group, BenchmarkId, Criterion, Throughput};
use sglang_router_rs::tool_parser::{
    registry::ParserRegistry, state::ParseState, types::StreamResult,
};
use std::collections::BTreeMap;
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::{Duration, Instant};
use tokio::runtime::Runtime;

// Test data for different parser formats - realistic complex examples
const JSON_SIMPLE: &str = r#"{"name": "code_interpreter", "arguments": "{\"language\": \"python\", \"code\": \"import numpy as np\\nimport matplotlib.pyplot as plt\\n\\n# Generate sample data\\nx = np.linspace(0, 10, 100)\\ny = np.sin(x) * np.exp(-x/10)\\n\\n# Create the plot\\nplt.figure(figsize=(10, 6))\\nplt.plot(x, y, 'b-', linewidth=2)\\nplt.grid(True)\\nplt.xlabel('Time (s)')\\nplt.ylabel('Amplitude')\\nplt.title('Damped Oscillation')\\nplt.show()\"}"}"#;

const JSON_ARRAY: &str = r#"[{"name": "web_search", "arguments": "{\"query\": \"latest developments in quantum computing 2024\", \"num_results\": 10, \"search_type\": \"news\", \"date_range\": \"2024-01-01:2024-12-31\", \"exclude_domains\": [\"reddit.com\", \"facebook.com\"], \"language\": \"en\"}"}, {"name": "analyze_sentiment", "arguments": "{\"text\": \"The breakthrough in quantum error correction represents a significant milestone. Researchers are optimistic about practical applications within the next decade.\", \"granularity\": \"sentence\", \"aspects\": [\"technology\", \"timeline\", \"impact\"], \"confidence_threshold\": 0.85}"}, {"name": "create_summary", "arguments": "{\"content_ids\": [\"doc_1234\", \"doc_5678\", \"doc_9012\"], \"max_length\": 500, \"style\": \"technical\", \"include_citations\": true}"}]"#;

const JSON_WITH_PARAMS: &str = r#"{"name": "database_query", "parameters": {"connection_string": "postgresql://user:pass@localhost:5432/analytics", "query": "SELECT customer_id, COUNT(*) as order_count, SUM(total_amount) as lifetime_value, AVG(order_amount) as avg_order_value FROM orders WHERE created_at >= '2024-01-01' GROUP BY customer_id HAVING COUNT(*) > 5 ORDER BY lifetime_value DESC LIMIT 100", "timeout_ms": 30000, "read_consistency": "strong", "partition_key": "customer_id"}}"#;

const MISTRAL_FORMAT: &str = r#"I'll help you analyze the sales data and create visualizations. Let me start by querying the database and then create some charts.

[TOOL_CALLS] [{"name": "sql_query", "arguments": {"database": "sales_analytics", "query": "WITH monthly_sales AS (SELECT DATE_TRUNC('month', order_date) as month, SUM(total_amount) as revenue, COUNT(DISTINCT customer_id) as unique_customers, COUNT(*) as total_orders FROM orders WHERE order_date >= CURRENT_DATE - INTERVAL '12 months' GROUP BY DATE_TRUNC('month', order_date)) SELECT month, revenue, unique_customers, total_orders, LAG(revenue) OVER (ORDER BY month) as prev_month_revenue, (revenue - LAG(revenue) OVER (ORDER BY month)) / LAG(revenue) OVER (ORDER BY month) * 100 as growth_rate FROM monthly_sales ORDER BY month DESC", "format": "json", "timeout": 60000}}]

Based on the query results, I can see interesting trends in your sales data."#;

const MISTRAL_MULTI: &str = r#"Let me help you with a comprehensive analysis of your application's performance.

[TOOL_CALLS] [{"name": "get_metrics", "arguments": {"service": "api-gateway", "metrics": ["latency_p50", "latency_p95", "latency_p99", "error_rate", "requests_per_second"], "start_time": "2024-01-01T00:00:00Z", "end_time": "2024-01-01T23:59:59Z", "aggregation": "5m", "filters": {"environment": "production", "region": "us-east-1"}}}, {"name": "analyze_logs", "arguments": {"log_group": "/aws/lambda/process-orders", "query": "fields @timestamp, @message, @requestId, duration | filter @message like /ERROR/ | stats count() by bin(@timestamp, 5m) as time_window", "start_time": "2024-01-01T00:00:00Z", "end_time": "2024-01-01T23:59:59Z", "limit": 1000}}, {"name": "get_traces", "arguments": {"service": "order-processing", "operation": "ProcessOrder", "min_duration_ms": 1000, "max_results": 100, "include_downstream": true}}]

Now let me create a comprehensive report based on this data."#;

const QWEN_FORMAT: &str = r#"Let me search for information about machine learning frameworks and their performance benchmarks.

<tool_call>
{"name": "academic_search", "arguments": {"query": "transformer architecture optimization techniques GPU inference latency reduction", "databases": ["arxiv", "ieee", "acm"], "year_range": [2020, 2024], "citation_count_min": 10, "include_code": true, "page_size": 25, "sort_by": "relevance"}}
</tool_call>

I found several interesting papers on optimization techniques."#;

const QWEN_MULTI: &str = r#"I'll help you set up a complete data pipeline for your analytics system.

<tool_call>
{"name": "create_data_pipeline", "arguments": {"name": "customer_analytics_etl", "source": {"type": "kafka", "config": {"bootstrap_servers": "kafka1:9092,kafka2:9092", "topic": "customer_events", "consumer_group": "analytics_consumer", "auto_offset_reset": "earliest"}}, "transformations": [{"type": "filter", "condition": "event_type IN ('purchase', 'signup', 'churn')"}, {"type": "aggregate", "window": "1h", "group_by": ["customer_id", "event_type"], "metrics": ["count", "sum(amount)"]}], "destination": {"type": "bigquery", "dataset": "analytics", "table": "customer_metrics", "write_mode": "append"}}}
</tool_call>
<tool_call>
{"name": "schedule_job", "arguments": {"job_id": "customer_analytics_etl", "schedule": "0 */4 * * *", "timezone": "UTC", "retry_policy": {"max_attempts": 3, "backoff_multiplier": 2, "max_backoff": 3600}, "notifications": {"on_failure": ["ops-team@company.com"], "on_success": null}, "monitoring": {"sla_minutes": 30, "alert_threshold": 0.95}}}
</tool_call>
<tool_call>
{"name": "create_dashboard", "arguments": {"title": "Customer Analytics Dashboard", "widgets": [{"type": "time_series", "title": "Customer Acquisition", "query": "SELECT DATE(timestamp) as date, COUNT(DISTINCT customer_id) as new_customers FROM analytics.customer_metrics WHERE event_type = 'signup' GROUP BY date ORDER BY date", "visualization": "line"}, {"type": "metric", "title": "Total Revenue", "query": "SELECT SUM(amount) as total FROM analytics.customer_metrics WHERE event_type = 'purchase' AND DATE(timestamp) = CURRENT_DATE()", "format": "currency"}, {"type": "table", "title": "Top Customers", "query": "SELECT customer_id, COUNT(*) as purchases, SUM(amount) as total_spent FROM analytics.customer_metrics WHERE event_type = 'purchase' GROUP BY customer_id ORDER BY total_spent DESC LIMIT 10"}], "refresh_interval": 300}}
</tool_call>

The data pipeline has been configured and the dashboard is ready."#;

const LLAMA_FORMAT: &str = r#"<|python_tag|>{"name": "execute_code", "arguments": "{\"code\": \"import pandas as pd\\nimport numpy as np\\nfrom sklearn.model_selection import train_test_split\\nfrom sklearn.ensemble import RandomForestClassifier\\nfrom sklearn.metrics import classification_report, confusion_matrix\\nimport joblib\\n\\n# Load and preprocess data\\ndf = pd.read_csv('/data/customer_churn.csv')\\nprint(f'Dataset shape: {df.shape}')\\nprint(f'Missing values: {df.isnull().sum().sum()}')\\n\\n# Feature engineering\\ndf['tenure_months'] = pd.to_datetime('today') - pd.to_datetime(df['signup_date'])\\ndf['tenure_months'] = df['tenure_months'].dt.days // 30\\ndf['avg_monthly_spend'] = df['total_spend'] / df['tenure_months'].clip(lower=1)\\n\\n# Prepare features and target\\nfeature_cols = ['tenure_months', 'avg_monthly_spend', 'support_tickets', 'product_usage_hours', 'feature_adoption_score']\\nX = df[feature_cols]\\ny = df['churned']\\n\\n# Split and train\\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)\\nrf_model = RandomForestClassifier(n_estimators=100, max_depth=10, min_samples_split=5, random_state=42)\\nrf_model.fit(X_train, y_train)\\n\\n# Evaluate\\ny_pred = rf_model.predict(X_test)\\nprint('Classification Report:')\\nprint(classification_report(y_test, y_pred))\\n\\n# Save model\\njoblib.dump(rf_model, '/models/churn_predictor_v1.pkl')\\nprint('Model saved successfully!')\"}"}"#;

const PYTHONIC_FORMAT: &str = r#"[retrieve_context(query="How do transformer models handle long-range dependencies in natural language processing tasks?", index="ml_knowledge_base", top_k=5, similarity_threshold=0.75, rerank=True, include_metadata=True, filters={"category": "deep_learning", "year": {"$gte": 2020}})]"#;

const PYTHONIC_MULTI: &str = r#"[fetch_api_data(endpoint="https://api.weather.com/v1/forecast", params={"lat": 37.7749, "lon": -122.4194, "units": "metric", "days": 7, "hourly": True}, headers={"API-Key": "${WEATHER_API_KEY}"}, timeout=30, retry_count=3), process_weather_data(data="${response}", extract_fields=["temperature", "humidity", "precipitation", "wind_speed", "uv_index"], aggregation="daily", calculate_trends=True), generate_report(data="${processed_data}", template="weather_forecast", format="html", include_charts=True, language="en")]"#;

const DEEPSEEK_FORMAT: &str = r#"I'll analyze your codebase and identify potential security vulnerabilities.

🤔[{"name": "scan_repository", "arguments": {"repo_path": "/src/application", "scan_types": ["security", "dependencies", "secrets", "code_quality"], "file_patterns": ["*.py", "*.js", "*.java", "*.go"], "exclude_dirs": ["node_modules", ".git", "vendor", "build"], "vulnerability_databases": ["cve", "nvd", "ghsa"], "min_severity": "medium", "check_dependencies": true, "deep_scan": true, "parallel_workers": 8}}]

Let me examine the scan results and provide recommendations."#;

const KIMIK2_FORMAT: &str = r#"⍼validate_and_deploy⍁{"deployment_config": {"application": "payment-service", "version": "2.3.1", "environment": "staging", "region": "us-west-2", "deployment_strategy": "blue_green", "health_check": {"endpoint": "/health", "interval": 30, "timeout": 5, "healthy_threshold": 2, "unhealthy_threshold": 3}, "rollback_on_failure": true, "canary_config": {"percentage": 10, "duration_minutes": 30, "metrics": ["error_rate", "latency_p99", "success_rate"], "thresholds": {"error_rate": 0.01, "latency_p99": 500, "success_rate": 0.99}}, "pre_deployment_hooks": ["run_tests", "security_scan", "backup_database"], "post_deployment_hooks": ["smoke_tests", "notify_team", "update_documentation"]}}"#;

const GLM4_FORMAT: &str = r#"<tool>
analyze_customer_behavior
<parameter>dataset_id=customer_interactions_2024</parameter>
<parameter>analysis_type=cohort_retention</parameter>
<parameter>cohort_definition=signup_month</parameter>
<parameter>retention_periods=[1, 7, 14, 30, 60, 90, 180, 365]</parameter>
<parameter>segment_by=["acquisition_channel", "pricing_tier", "industry", "company_size"]</parameter>
<parameter>metrics=["active_users", "revenue", "feature_usage", "engagement_score"]</parameter>
<parameter>statistical_tests=["chi_square", "anova", "trend_analysis"]</parameter>
<parameter>visualization_types=["heatmap", "line_chart", "funnel", "sankey"]</parameter>
<parameter>export_format=dashboard</parameter>
<parameter>confidence_level=0.95</parameter>
</tool>"#;

const STEP3_FORMAT: &str = r#"<step.tML version="0.1">
<call>
<name>orchestrate_ml_pipeline</name>
<parameters>
<parameter name="pipeline_name">fraud_detection_model_v3</parameter>
<parameter name="data_source">s3://ml-datasets/transactions/2024/</parameter>
<parameter name="preprocessing_steps">
  <step order="1" type="clean">{"remove_duplicates": true, "handle_missing": "interpolate", "outlier_method": "isolation_forest"}</step>
  <step order="2" type="feature_engineering">{"create_ratios": true, "time_features": ["hour", "day_of_week", "month"], "aggregations": ["mean", "std", "max"]}</step>
  <step order="3" type="normalize">{"method": "robust_scaler", "clip_outliers": true}</step>
</parameter>
<parameter name="model_config">{"algorithm": "xgboost", "hyperparameters": {"n_estimators": 500, "max_depth": 8, "learning_rate": 0.01, "subsample": 0.8}, "cross_validation": {"method": "stratified_kfold", "n_splits": 5}}</parameter>
<parameter name="evaluation_metrics">["auc_roc", "precision_recall", "f1", "confusion_matrix"]</parameter>
<parameter name="deployment_target">sagemaker_endpoint</parameter>
<parameter name="monitoring_config">{"drift_detection": true, "performance_threshold": 0.92, "alert_emails": ["ml-team@company.com"]}</parameter>
</parameters>
</call>
</step.tML>"#;

const GPT_OSS_FORMAT: &str = r#"<Channel.vector_search>{"collection": "technical_documentation", "query_embedding": [0.0234, -0.1456, 0.0891, 0.2341, -0.0567, 0.1234, 0.0456, -0.0789, 0.1567, 0.0234, -0.1123, 0.0678, 0.2345, -0.0456, 0.0891, 0.1234, -0.0567, 0.0789, 0.1456, -0.0234, 0.0891, 0.1567, -0.0678, 0.0345, 0.1234, -0.0456, 0.0789, 0.1891, -0.0234, 0.0567, 0.1345, -0.0891], "top_k": 10, "similarity_metric": "cosine", "filters": {"language": "en", "last_updated": {"$gte": "2023-01-01"}, "categories": {"$in": ["api", "sdk", "integration"]}}, "include_metadata": true, "rerank_with_cross_encoder": true}</Channel.vector_search>"#;

// Large test data for stress testing
fn generate_large_json(num_tools: usize) -> String {
    let mut tools = Vec::new();
    for i in 0..num_tools {
        tools.push(format!(
            r#"{{"name": "tool_{}", "arguments": {{"param1": "value{}", "param2": {}, "param3": true}}}}"#,
            i, i, i
        ));
    }
    format!("[{}]", tools.join(", "))
}

// Global results storage
lazy_static::lazy_static! {
    static ref BENCHMARK_RESULTS: Mutex<BTreeMap<String, String>> = Mutex::new(BTreeMap::new());
}

fn add_result(category: &str, result: String) {
    let mut results = BENCHMARK_RESULTS.lock().unwrap();
    let index = results.len();
    results.insert(format!("{:03}_{}", index, category), result);
}

fn bench_registry_creation(c: &mut Criterion) {
    let mut group = c.benchmark_group("registry_creation");

    let printed = Arc::new(AtomicBool::new(false));
    group.bench_function("new_registry", |b| {
        let printed_clone = printed.clone();

        b.iter_custom(|iters| {
            let start = Instant::now();
            for _ in 0..iters {
                let registry = black_box(ParserRegistry::new());
                // Force evaluation to prevent optimization
                black_box(registry.list_parsers());
            }
            let duration = start.elapsed();

            if !printed_clone.load(Ordering::Relaxed) {
                let ops_per_sec = iters as f64 / duration.as_secs_f64();
                let time_per_op = duration.as_micros() as f64 / iters as f64;

                let result = format!(
                    "{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
                    "Registry Creation", ops_per_sec, time_per_op, "N/A"
                );
                add_result("registry", result);

                printed_clone.store(true, Ordering::Relaxed);
            }

            duration
        });
    });

    group.finish();
}

fn bench_parser_lookup(c: &mut Criterion) {
    let registry = Arc::new(ParserRegistry::new());
    let models = vec![
        "gpt-4",
        "mistral-large",
        "qwen-72b",
        "llama-3.2",
        "deepseek-v3",
        "unknown-model",
    ];

    let mut group = c.benchmark_group("parser_lookup");

    for model in models {
        let printed = Arc::new(AtomicBool::new(false));
        let registry_clone = registry.clone();

        group.bench_function(model, |b| {
            let printed_clone = printed.clone();
            let registry = registry_clone.clone();

            b.iter_custom(|iters| {
                let start = Instant::now();
                for _ in 0..iters {
                    let parser = black_box(registry.get_parser(model));
                    // Force evaluation
                    black_box(parser.is_some());
                }
                let duration = start.elapsed();

                if !printed_clone.load(Ordering::Relaxed) {
                    let ops_per_sec = iters as f64 / duration.as_secs_f64();
                    let time_per_op = duration.as_nanos() as f64 / iters as f64;

                    let result = format!(
                        "{:<25} | {:>12.0} | {:>12.1}ns | {:>15}",
                        format!("Lookup {}", model),
                        ops_per_sec,
                        time_per_op,
                        if registry.get_parser(model).is_some() {
                            "Found"
                        } else {
                            "Fallback"
                        }
                    );
                    add_result("lookup", result);

                    printed_clone.store(true, Ordering::Relaxed);
                }

                duration
            });
        });
    }

    group.finish();
}

fn bench_complete_parsing(c: &mut Criterion) {
    let rt = Runtime::new().unwrap();
    let registry = Arc::new(ParserRegistry::new());

    let test_cases = vec![
        ("json_simple", "json", JSON_SIMPLE),
        ("json_array", "json", JSON_ARRAY),
        ("json_params", "json", JSON_WITH_PARAMS),
        ("mistral_single", "mistral", MISTRAL_FORMAT),
        ("mistral_multi", "mistral", MISTRAL_MULTI),
        ("qwen_single", "qwen", QWEN_FORMAT),
        ("qwen_multi", "qwen", QWEN_MULTI),
        ("llama", "llama", LLAMA_FORMAT),
        ("pythonic_single", "pythonic", PYTHONIC_FORMAT),
        ("pythonic_multi", "pythonic", PYTHONIC_MULTI),
        ("deepseek", "deepseek", DEEPSEEK_FORMAT),
        ("kimik2", "kimik2", KIMIK2_FORMAT),
        ("glm4", "glm4_moe", GLM4_FORMAT),
        ("step3", "step3", STEP3_FORMAT),
        ("gpt_oss", "gpt_oss", GPT_OSS_FORMAT),
    ];

    let mut group = c.benchmark_group("complete_parsing");

    for (name, parser_name, input) in test_cases {
        let printed = Arc::new(AtomicBool::new(false));
        let registry_clone = registry.clone();
        let input_len = input.len();

        group.throughput(Throughput::Bytes(input_len as u64));
        group.bench_function(name, |b| {
            let printed_clone = printed.clone();
            let registry = registry_clone.clone();
            let rt = rt.handle().clone();

            b.iter_custom(|iters| {
                let parser = registry.get_parser(parser_name).expect("Parser not found");

                let start = Instant::now();
                for _ in 0..iters {
                    let parser = parser.clone();
                    let result = rt.block_on(async { parser.parse_complete(input).await });
                    black_box(result.unwrap());
                }
                let duration = start.elapsed();

                if !printed_clone.load(Ordering::Relaxed) {
                    let ops_per_sec = iters as f64 / duration.as_secs_f64();
                    let bytes_per_sec = (iters as f64 * input_len as f64) / duration.as_secs_f64();
                    let time_per_op = duration.as_micros() as f64 / iters as f64;

                    let result = format!(
                        "{:<25} | {:>10} | {:>12.0} | {:>12.0} | {:>10.1}µs",
                        name, input_len, ops_per_sec, bytes_per_sec, time_per_op
                    );
                    add_result("complete", result);

                    printed_clone.store(true, Ordering::Relaxed);
                }

                duration
            });
        });
    }

    group.finish();
}

fn bench_streaming_parsing(c: &mut Criterion) {
    let rt = Runtime::new().unwrap();
    let registry = Arc::new(ParserRegistry::new());

    // Streaming test with chunked input
    let chunks = vec![
        r#"{"na"#,
        r#"me": "sear"#,
        r#"ch", "argu"#,
        r#"ments": {"qu"#,
        r#"ery": "rust prog"#,
        r#"ramming", "li"#,
        r#"mit": 10, "off"#,
        r#"set": 0}"#,
        r#"}"#,
    ];

    let mut group = c.benchmark_group("streaming_parsing");

    let printed = Arc::new(AtomicBool::new(false));
    group.bench_function("json_streaming", |b| {
        let printed_clone = printed.clone();
        let registry = registry.clone();
        let rt = rt.handle().clone();

        b.iter_custom(|iters| {
            let parser = registry.get_parser("json").expect("Parser not found");

            let start = Instant::now();
            for _ in 0..iters {
                let parser = parser.clone();
                let mut state = ParseState::new();
                let mut complete_tools = Vec::new();

                rt.block_on(async {
                    for chunk in &chunks {
                        if let StreamResult::ToolComplete(tool) =
                            parser.parse_incremental(chunk, &mut state).await.unwrap()
                        {
                            complete_tools.push(tool);
                        }
                    }
                });

                black_box(complete_tools);
            }
            let duration = start.elapsed();

            if !printed_clone.load(Ordering::Relaxed) {
                let ops_per_sec = iters as f64 / duration.as_secs_f64();
                let time_per_op = duration.as_micros() as f64 / iters as f64;
                let chunks_per_sec = (iters as f64 * chunks.len() as f64) / duration.as_secs_f64();

                let result = format!(
                    "{:<25} | {:>10} | {:>12.0} | {:>12.0} | {:>10.1}µs",
                    "JSON Streaming",
                    chunks.len(),
                    ops_per_sec,
                    chunks_per_sec,
                    time_per_op
                );
                add_result("streaming", result);

                printed_clone.store(true, Ordering::Relaxed);
            }

            duration
        });
    });

    group.finish();
}

fn bench_concurrent_parsing(c: &mut Criterion) {
    let rt = Runtime::new().unwrap();
    let registry = Arc::new(ParserRegistry::new());
    let parser = registry.get_parser("json").expect("Parser not found");

    let thread_counts = vec![1, 2, 4, 8, 16, 32];
    let operations_per_thread = 100;

    let mut group = c.benchmark_group("concurrent_parsing");
    group.measurement_time(Duration::from_secs(3));

    for num_threads in thread_counts {
        let printed = Arc::new(AtomicBool::new(false));
        let parser_clone = parser.clone();

        group.bench_with_input(
            BenchmarkId::from_parameter(num_threads),
            &num_threads,
            |b, &threads| {
                let printed_clone = printed.clone();
                let parser = parser_clone.clone();
                let rt = rt.handle().clone();

                b.iter_custom(|_iters| {
                    let total_operations = Arc::new(AtomicU64::new(0));
                    let total_parsed = Arc::new(AtomicU64::new(0));
                    let start = Instant::now();

                    let handles: Vec<_> = (0..threads)
                        .map(|_thread_id| {
                            let parser = parser.clone();
                            let total_ops = total_operations.clone();
                            let total_p = total_parsed.clone();
                            let rt = rt.clone();

                            thread::spawn(move || {
                                let test_inputs = [JSON_SIMPLE, JSON_ARRAY, JSON_WITH_PARAMS];

                                for i in 0..operations_per_thread {
                                    let input = test_inputs[i % test_inputs.len()];
                                    let result =
                                        rt.block_on(async { parser.parse_complete(input).await });

                                    if let Ok(tools) = result {
                                        total_p.fetch_add(tools.len() as u64, Ordering::Relaxed);
                                    }
                                }

                                total_ops
                                    .fetch_add(operations_per_thread as u64, Ordering::Relaxed);
                            })
                        })
                        .collect();

                    for handle in handles {
                        handle.join().unwrap();
                    }

                    let duration = start.elapsed();

                    if !printed_clone.load(Ordering::Relaxed) {
                        let total_ops = total_operations.load(Ordering::Relaxed);
                        let total_p = total_parsed.load(Ordering::Relaxed);
                        let ops_per_sec = total_ops as f64 / duration.as_secs_f64();
                        let tools_per_sec = total_p as f64 / duration.as_secs_f64();

                        let result = format!(
                            "{:<25} | {:>10} | {:>12.0} | {:>12.0} | {:>10}",
                            format!("{}_threads", threads),
                            total_ops,
                            ops_per_sec,
                            tools_per_sec,
                            threads
                        );
                        add_result("concurrent", result);

                        printed_clone.store(true, Ordering::Relaxed);
                    }

                    duration
                });
            },
        );
    }

    group.finish();
}

fn bench_large_payloads(c: &mut Criterion) {
    let rt = Runtime::new().unwrap();
    let registry = Arc::new(ParserRegistry::new());
    let parser = registry.get_parser("json").expect("Parser not found");

    let sizes = vec![1, 10, 50, 100, 500];

    let mut group = c.benchmark_group("large_payloads");

    for size in sizes {
        let large_json = generate_large_json(size);
        let input_len = large_json.len();
        let printed = Arc::new(AtomicBool::new(false));
        let parser_clone = parser.clone();

        group.throughput(Throughput::Bytes(input_len as u64));
        group.bench_with_input(BenchmarkId::from_parameter(size), &size, |b, &num_tools| {
            let printed_clone = printed.clone();
            let parser = parser_clone.clone();
            let rt = rt.handle().clone();
            let input = &large_json;

            b.iter_custom(|iters| {
                let start = Instant::now();
                for _ in 0..iters {
                    let parser = parser.clone();
                    let result = rt.block_on(async { parser.parse_complete(input).await });
                    black_box(result.unwrap());
                }
                let duration = start.elapsed();

                if !printed_clone.load(Ordering::Relaxed) {
                    let ops_per_sec = iters as f64 / duration.as_secs_f64();
                    let bytes_per_sec = (iters as f64 * input_len as f64) / duration.as_secs_f64();
                    let time_per_op = duration.as_millis() as f64 / iters as f64;

                    let result = format!(
                        "{:<25} | {:>10} | {:>10} | {:>12.0} | {:>12.0} | {:>10.1}ms",
                        format!("{}_tools", num_tools),
                        num_tools,
                        input_len,
                        ops_per_sec,
                        bytes_per_sec,
                        time_per_op
                    );
                    add_result("large", result);

                    printed_clone.store(true, Ordering::Relaxed);
                }

                duration
            });
        });
    }

    group.finish();
}

fn bench_parser_reuse(c: &mut Criterion) {
    let rt = Runtime::new().unwrap();

    let mut group = c.benchmark_group("parser_reuse");

    // Benchmark creating new registry each time
    let printed_new = Arc::new(AtomicBool::new(false));
    group.bench_function("new_registry_each_time", |b| {
        let printed_clone = printed_new.clone();
        let rt = rt.handle().clone();

        b.iter_custom(|iters| {
            let start = Instant::now();
            for _ in 0..iters {
                let registry = ParserRegistry::new();
                let parser = registry.get_parser("json").unwrap();
                let result = rt.block_on(async { parser.parse_complete(JSON_SIMPLE).await });
                black_box(result.unwrap());
            }
            let duration = start.elapsed();

            if !printed_clone.load(Ordering::Relaxed) {
                let ops_per_sec = iters as f64 / duration.as_secs_f64();
                let time_per_op = duration.as_micros() as f64 / iters as f64;

                let result = format!(
                    "{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
                    "New Registry Each Time", ops_per_sec, time_per_op, "Baseline"
                );
                add_result("reuse", result);

                printed_clone.store(true, Ordering::Relaxed);
            }

            duration
        });
    });

    // Benchmark reusing registry
    let printed_reuse = Arc::new(AtomicBool::new(false));
    let shared_registry = Arc::new(ParserRegistry::new());

    group.bench_function("reuse_registry", |b| {
        let printed_clone = printed_reuse.clone();
        let registry = shared_registry.clone();
        let rt = rt.handle().clone();

        b.iter_custom(|iters| {
            let parser = registry.get_parser("json").unwrap();

            let start = Instant::now();
            for _ in 0..iters {
                let parser = parser.clone();
                let result = rt.block_on(async { parser.parse_complete(JSON_SIMPLE).await });
                black_box(result.unwrap());
            }
            let duration = start.elapsed();

            if !printed_clone.load(Ordering::Relaxed) {
                let ops_per_sec = iters as f64 / duration.as_secs_f64();
                let time_per_op = duration.as_micros() as f64 / iters as f64;

                let result = format!(
                    "{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
                    "Reuse Registry", ops_per_sec, time_per_op, "Optimized"
                );
                add_result("reuse", result);

                printed_clone.store(true, Ordering::Relaxed);
            }

            duration
        });
    });

    // Benchmark reusing parser
    let printed_parser = Arc::new(AtomicBool::new(false));
    let shared_parser = shared_registry.get_parser("json").unwrap();

    group.bench_function("reuse_parser", |b| {
        let printed_clone = printed_parser.clone();
        let parser = shared_parser.clone();
        let rt = rt.handle().clone();

        b.iter_custom(|iters| {
            let start = Instant::now();
            for _ in 0..iters {
                let parser = parser.clone();
                let result = rt.block_on(async { parser.parse_complete(JSON_SIMPLE).await });
                black_box(result.unwrap());
            }
            let duration = start.elapsed();

            if !printed_clone.load(Ordering::Relaxed) {
                let ops_per_sec = iters as f64 / duration.as_secs_f64();
                let time_per_op = duration.as_micros() as f64 / iters as f64;

                let result = format!(
                    "{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
                    "Reuse Parser", ops_per_sec, time_per_op, "Best"
                );
                add_result("reuse", result);

                printed_clone.store(true, Ordering::Relaxed);
            }

            duration
        });
    });

    group.finish();
}

fn bench_latency_distribution(c: &mut Criterion) {
    let rt = Runtime::new().unwrap();
    let registry = Arc::new(ParserRegistry::new());

    let test_cases = vec![
        ("json", JSON_SIMPLE),
        ("mistral", MISTRAL_FORMAT),
        ("qwen", QWEN_FORMAT),
        ("pythonic", PYTHONIC_FORMAT),
    ];

    let mut group = c.benchmark_group("latency");

    for (parser_name, input) in test_cases {
        let printed = Arc::new(AtomicBool::new(false));
        let registry_clone = registry.clone();

        group.bench_function(parser_name, |b| {
            let printed_clone = printed.clone();
            let registry = registry_clone.clone();
            let rt = rt.handle().clone();

            b.iter_custom(|iters| {
                let parser = registry.get_parser(parser_name).expect("Parser not found");

                let total_duration = if !printed_clone.load(Ordering::Relaxed) {
                    let mut latencies = Vec::new();

                    // Warm up
                    for _ in 0..100 {
                        let parser = parser.clone();
                        rt.block_on(async { parser.parse_complete(input).await })
                            .unwrap();
                    }

                    // Measure for statistics
                    for _ in 0..1000 {
                        let parser = parser.clone();
                        let start = Instant::now();
                        rt.block_on(async { parser.parse_complete(input).await })
                            .unwrap();
                        let latency = start.elapsed();
                        latencies.push(latency);
                    }

                    latencies.sort();
                    let p50 = latencies[latencies.len() / 2];
                    let p95 = latencies[latencies.len() * 95 / 100];
                    let p99 = latencies[latencies.len() * 99 / 100];
                    let max = latencies.last().unwrap();

                    let result = format!(
                        "{:<25} | {:>10.1} | {:>10.1} | {:>10.1} | {:>10.1} | {:>10}",
                        parser_name,
                        p50.as_micros() as f64,
                        p95.as_micros() as f64,
                        p99.as_micros() as f64,
                        max.as_micros() as f64,
                        1000
                    );
                    add_result("latency", result);

                    printed_clone.store(true, Ordering::Relaxed);

                    // Return median for consistency
                    p50 * iters as u32
                } else {
                    // Regular benchmark iterations
                    let start = Instant::now();
                    for _ in 0..iters {
                        let parser = parser.clone();
                        rt.block_on(async { parser.parse_complete(input).await })
                            .unwrap();
                    }
                    start.elapsed()
                };

                total_duration
            });
        });
    }

    group.finish();
}

// Print final summary table
fn print_summary() {
    println!("\n{}", "=".repeat(120));
    println!("TOOL PARSER BENCHMARK SUMMARY");
    println!("{}", "=".repeat(120));

    let results = BENCHMARK_RESULTS.lock().unwrap();

    let mut current_category = String::new();
    for (key, value) in results.iter() {
        let category = key.split('_').skip(1).collect::<Vec<_>>().join("_");

        if category != current_category {
            current_category = category.clone();

            // Print section header based on category
            println!("\n{}", "-".repeat(120));
            match category.as_str() {
                "registry" => {
                    println!("REGISTRY OPERATIONS");
                    println!(
                        "{:<25} | {:>12} | {:>12} | {:>15}",
                        "Operation", "Ops/sec", "Time/op", "Notes"
                    );
                }
                "lookup" => {
                    println!("PARSER LOOKUP PERFORMANCE");
                    println!(
                        "{:<25} | {:>12} | {:>12} | {:>15}",
                        "Model", "Lookups/sec", "Time/lookup", "Result"
                    );
                }
                "complete" => {
                    println!("COMPLETE PARSING PERFORMANCE");
                    println!(
                        "{:<25} | {:>10} | {:>12} | {:>12} | {:>12}",
                        "Parser Format", "Size(B)", "Ops/sec", "Bytes/sec", "Time/op"
                    );
                }
                "streaming" => {
                    println!("STREAMING PARSING PERFORMANCE");
                    println!(
                        "{:<25} | {:>10} | {:>12} | {:>12} | {:>12}",
                        "Parser", "Chunks", "Ops/sec", "Chunks/sec", "Time/op"
                    );
                }
                "concurrent" => {
                    println!("CONCURRENT PARSING");
                    println!(
                        "{:<25} | {:>10} | {:>12} | {:>12} | {:>10}",
                        "Configuration", "Total Ops", "Ops/sec", "Tools/sec", "Threads"
                    );
                }
                "large" => {
                    println!("LARGE PAYLOAD PARSING");
                    println!(
                        "{:<25} | {:>10} | {:>10} | {:>12} | {:>12} | {:>12}",
                        "Payload", "Tools", "Size(B)", "Ops/sec", "Bytes/sec", "Time/op"
                    );
                }
                "reuse" => {
                    println!("PARSER REUSE COMPARISON");
                    println!(
                        "{:<25} | {:>12} | {:>12} | {:>15}",
                        "Strategy", "Ops/sec", "Time/op", "Performance"
                    );
                }
                "latency" => {
                    println!("LATENCY DISTRIBUTION");
                    println!(
                        "{:<25} | {:>10} | {:>10} | {:>10} | {:>10} | {:>10}",
                        "Parser", "P50(µs)", "P95(µs)", "P99(µs)", "Max(µs)", "Samples"
                    );
                }
                _ => {}
            }
            println!("{}", "-".repeat(120));
        }

        println!("{}", value);
    }

    println!("\n{}", "=".repeat(120));

    // Print performance analysis
    println!("\nPERFORMANCE ANALYSIS:");
    println!("{}", "-".repeat(120));

    // Calculate and display key metrics
    if let Some(new_registry) = results.get("007_reuse") {
        if let Some(reuse_parser) = results.get("009_reuse") {
            // Extract ops/sec values
            let new_ops: f64 = new_registry
                .split('|')
                .nth(1)
                .and_then(|s| s.trim().parse().ok())
                .unwrap_or(0.0);
            let reuse_ops: f64 = reuse_parser
                .split('|')
                .nth(1)
                .and_then(|s| s.trim().parse().ok())
                .unwrap_or(0.0);

            if new_ops > 0.0 && reuse_ops > 0.0 {
                let improvement = (reuse_ops / new_ops - 1.0) * 100.0;
                println!("Parser Reuse Improvement: {:.1}% faster", improvement);

                if improvement < 100.0 {
                    println!("⚠️  WARNING: Parser reuse improvement is lower than expected!");
                    println!("   Expected: >100% improvement with singleton pattern");
                    println!("   Actual: {:.1}% improvement", improvement);
                    println!("   Recommendation: Implement global singleton registry");
                }
            }
        }
    }

    println!("{}", "=".repeat(120));
}

fn run_benchmarks(c: &mut Criterion) {
    bench_registry_creation(c);
    bench_parser_lookup(c);
    bench_complete_parsing(c);
    bench_streaming_parsing(c);
    bench_concurrent_parsing(c);
    bench_large_payloads(c);
    bench_parser_reuse(c);
    bench_latency_distribution(c);

    // Print summary at the end
    print_summary();
}

criterion_group!(benches, run_benchmarks);
criterion::criterion_main!(benches);