openai_api_completions.ipynb 22.1 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
16
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
17
18
    "\n",
    "Check out other tutorials to learn about vision APIs for vision-language models and embedding APIs for embedding models."
Chayenne's avatar
Chayenne committed
19
20
21
22
23
24
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
25
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
26
    "\n",
27
    "This code block is equivalent to executing \n",
Chayenne's avatar
Chayenne committed
28
    "\n",
29
30
31
32
33
34
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "```\n",
    "\n",
    "in your terminal and wait for the server to be ready."
Chayenne's avatar
Chayenne committed
35
36
37
38
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
39
   "execution_count": null,
40
   "metadata": {},
Chayenne's avatar
Chayenne committed
41
   "outputs": [],
Chayenne's avatar
Chayenne committed
42
   "source": [
43
44
45
46
47
48
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
Chayenne's avatar
Chayenne committed
49
50
    "\n",
    "server_process = execute_shell_command(\n",
Chayenne's avatar
Chayenne committed
51
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
52
53
    ")\n",
    "\n",
54
    "wait_for_server(\"http://localhost:30000\")"
Chayenne's avatar
Chayenne committed
55
56
   ]
  },
57
58
59
60
61
62
63
64
65
66
67
68
69
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
70
71
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
72
   "execution_count": null,
73
   "metadata": {},
Chayenne's avatar
Chayenne committed
74
   "outputs": [],
Chayenne's avatar
Chayenne committed
75
76
77
78
79
80
81
82
83
84
85
86
87
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
88
89
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
90
91
92
93
94
95
96
97
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
98
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
99
100
101
102
103
104
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
105
   "execution_count": null,
106
   "metadata": {},
Chayenne's avatar
Chayenne committed
107
   "outputs": [],
Chayenne's avatar
Chayenne committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
124
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
125
126
127
128
129
130
131
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
132
133
134
135
136
137
138
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
139
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
140
141
142
143
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
144
   "execution_count": null,
145
   "metadata": {},
Chayenne's avatar
Chayenne committed
146
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
156
157
158
159
160
161
162
163
164
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
165
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
166
167
168
169
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
170
   "execution_count": null,
171
   "metadata": {},
Chayenne's avatar
Chayenne committed
172
   "outputs": [],
Chayenne's avatar
Chayenne committed
173
174
175
176
177
178
179
180
181
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
182
183
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
184
185
186
187
188
189
190
191
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
192
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
193
194
195
196
197
198
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
199
   "execution_count": null,
200
   "metadata": {},
Chayenne's avatar
Chayenne committed
201
   "outputs": [],
Chayenne's avatar
Chayenne committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
216
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
217
218
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
219
220
221
222
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
223
224
    "## Structured Outputs (JSON, Regex, EBNF)\n",
    "You can specify a JSON schema, Regular Expression or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. \n",
225
    "\n",
226
    "SGLang supports two grammar backends:\n",
227
    "\n",
228
229
230
231
232
233
234
    "- [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and Regular Expression constraints.\n",
    "- [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema and EBNF constraints.\n",
    "  - XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md)\n",
    "\n",
    "> 🔔 Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified at a time.\n",
    "\n",
    "Initialise xgrammar backend using `--grammar-backend xgrammar` flag\n",
235
236
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
237
    "--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines)\n",
238
    "```\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
239
240
241
242
243
244
245
    "\n",
    "### JSON"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
246
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
Chayenne's avatar
Chayenne committed
265
266
267
268
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France in the JSON format.\",\n",
    "        },\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\"name\": \"foo\", \"schema\": json.loads(json_schema)},\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
285
    "### Regular expression (use default \"outlines\" backend)"
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
288
289
290
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
291
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    extra_body={\"regex\": \"(Paris|London)\"},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF (use \"xgrammar\" backend)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# terminate the existing server(that's using default outlines backend) for this demo\n",
    "terminate_process(server_process)\n",
    "\n",
    "# start new server with xgrammar backend\n",
    "server_process = execute_shell_command(\n",
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0 --grammar-backend xgrammar\"\n",
    ")\n",
    "wait_for_server(\"http://localhost:30000\")\n",
    "\n",
    "# EBNF example\n",
    "ebnf_grammar = r\"\"\"\n",
    "        root ::= \"Hello\" | \"Hi\" | \"Hey\"\n",
    "        \"\"\"\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful EBNF test bot.\"},\n",
    "        {\"role\": \"user\", \"content\": \"Say a greeting.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=32,\n",
    "    extra_body={\"ebnf\": ebnf_grammar},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
Chayenne's avatar
Chayenne committed
347
348
349
350
351
352
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
353
    "Batches API for chat completions and completions are also supported. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
Chayenne's avatar
Chayenne committed
354
355
356
357
358
359
360
361
362
363
364
365
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
366
   "execution_count": null,
367
   "metadata": {},
Chayenne's avatar
Chayenne committed
368
   "outputs": [],
Chayenne's avatar
Chayenne committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
416
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
417
418
419
420
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
421
   "execution_count": null,
422
   "metadata": {},
Chayenne's avatar
Chayenne committed
423
   "outputs": [],
Chayenne's avatar
Chayenne committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
443
444
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
445
    "\n",
446
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
447
448
449
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
450
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
451
    "    if hasattr(batch_response, \"errors\"):\n",
452
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
469
   "execution_count": null,
470
   "metadata": {},
Chayenne's avatar
Chayenne committed
471
   "outputs": [],
Chayenne's avatar
Chayenne committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(100):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
517
518
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
519
520
521
522
523
524
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
525
526
527
528
529
530
531
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
532
533
534
535
536
537
538
539
540
541
542
543
544
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
545
   "execution_count": null,
546
   "metadata": {},
Chayenne's avatar
Chayenne committed
547
   "outputs": [],
Chayenne's avatar
Chayenne committed
548
549
550
551
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
Chayenne's avatar
Chayenne committed
552
    "import os\n",
Chayenne's avatar
Chayenne committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(500):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
594
595
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
596
597
598
599
600
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
601
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
602
603
604
605
606
607
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
608
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
609
610
611
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
612
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
613
614
    "\n",
    "except Exception as e:\n",
615
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
616
617
618
619
620
621
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
622
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
623
624
625
    "        if os.path.exists(input_file_path):\n",
    "            os.remove(input_file_path)\n",
    "            print_highlight(\"Successfully deleted local batch_requests.jsonl file\")\n",
Chayenne's avatar
Chayenne committed
626
    "    except Exception as e:\n",
627
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
628
629
630
631
632
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
633
634
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
635
   "outputs": [],
Chayenne's avatar
Chayenne committed
636
637
638
639
640
641
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
642
643
644
645
646
647
648
649
650
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
651
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
652
653
654
655
656
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}