test_qkv_proj_with_rope.py 14.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import unittest

import sgl_kernel
import torch
from utils import (
    convert_weight,
    native_w8a8_per_token_matmul,
    per_token_quant_int8,
    precision,
)

from sglang.srt.layers.rotary_embedding import _apply_rotary_emb
from sglang.test.test_utils import CustomTestCase

convert_weight_packed = torch.ops.sgl_kernel.convert_weight_packed
qkv_proj_with_rope = torch.ops.sgl_kernel.qkv_proj_with_rope
17
qkv_proj_with_rope_fused_weight = torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
torch.manual_seed(0)
# constants
kv_lora_rank = 512
qk_head_dim = 192
qk_nope_head_dim = 128
qk_rope_head_dim = 64
rotary_dim = qk_rope_head_dim
num_heads = 22
q_lora_rank = 1536
hidden_size = 7168
B = 1
eps = 1e-6


def layernorm(x, weight, variance_epsilon=1e-6, residual=None):
    orig_dtype = x.dtype
    x = x.to(torch.float32)
    variance = x.pow(2).mean(dim=-1, keepdim=True)
    x = x * torch.rsqrt(variance + variance_epsilon)
    return (x * weight).to(orig_dtype)


def rotary_emb(q_pe, k_pe, pos, cos_sin_cache):
    orig_dtype = q_pe.dtype
    q_pe = q_pe.float()
    k_pe = k_pe.float()
    cos_sin_cache = cos_sin_cache.float()

    query_rot = q_pe[..., :rotary_dim]
    key_rot = k_pe[..., :rotary_dim]
    cos_sin = cos_sin_cache[pos]
    cos, sin = cos_sin.chunk(2, dim=-1)
    query_rot = _apply_rotary_emb(query_rot, cos, sin, False)
    key_rot = _apply_rotary_emb(key_rot, cos, sin, False)
    return query_rot.to(orig_dtype), key_rot.to(orig_dtype)


def native_torch(
    q_input,
    hidden_states,
    q_a_proj_weight,
    norm_weight1,
    q_b_proj_weight,
    w_kc,
    kv_a_proj_weight,
    norm_weight2,
    pos,
    cos_sin_cache,
):

    q = torch.matmul(hidden_states, q_a_proj_weight.t())
    q = layernorm(q, norm_weight1)
    q = torch.matmul(q, q_b_proj_weight.t()).view(-1, num_heads, qk_head_dim)

    q_nope, q_pe = q.split([qk_nope_head_dim, qk_rope_head_dim], dim=-1)
    q_nope_out = torch.bmm(q_nope.transpose(0, 1), w_kc)

    q_input[..., :kv_lora_rank] = q_nope_out.transpose(0, 1)
    latent_cache = torch.matmul(hidden_states, kv_a_proj_weight.t())
    v_input = latent_cache[..., :kv_lora_rank]
    v_input = layernorm(v_input.contiguous(), norm_weight2).unsqueeze(1)
    k_input = latent_cache.unsqueeze(1)
    k_input[..., :kv_lora_rank] = v_input
    k_pe = k_input[..., kv_lora_rank:]

    q_pe, k_pe = rotary_emb(q_pe, k_pe, pos, cos_sin_cache)
    q_input[..., kv_lora_rank:] = q_pe
    k_input[..., kv_lora_rank:] = k_pe

    return q_input, k_input, v_input


def native_torch_int8(
    q_input,
    hidden_states,
    w1_q,
    w1_s,
    norm_weight1,
    w2_q,
    w2_s,
    w_kc,
    w3_q,
    w3_s,
    norm_weight2,
    pos,
    cos_sin_cache,
):

    a_q, a_s = per_token_quant_int8(hidden_states)
    q = native_w8a8_per_token_matmul(a_q, w1_q, a_s, w1_s, None, torch.bfloat16)
    q = layernorm(q, norm_weight1)

    a_q, a_s = per_token_quant_int8(q)
    q = native_w8a8_per_token_matmul(a_q, w2_q, a_s, w2_s, None, torch.bfloat16).view(
        -1, num_heads, qk_head_dim
    )

    q_nope, q_pe = q.split([qk_nope_head_dim, qk_rope_head_dim], dim=-1)
    q_nope_out = torch.bmm(q_nope.transpose(0, 1), w_kc)

    q_input[..., :kv_lora_rank] = q_nope_out.transpose(0, 1)
    a_q, a_s = per_token_quant_int8(hidden_states)
    latent_cache = native_w8a8_per_token_matmul(
        a_q, w3_q, a_s, w3_s, None, torch.bfloat16
    )
    v_input = latent_cache[..., :kv_lora_rank]
    v_input = layernorm(v_input.contiguous(), norm_weight2).unsqueeze(1)
    k_input = latent_cache.unsqueeze(1)
    k_input[..., :kv_lora_rank] = v_input
    k_pe = k_input[..., kv_lora_rank:]

    q_pe, k_pe = rotary_emb(q_pe, k_pe, pos, cos_sin_cache)
    q_input[..., kv_lora_rank:] = q_pe
    k_input[..., kv_lora_rank:] = k_pe

    return q_input, k_input, v_input


class TestQKVProjWithROPE(CustomTestCase):
    def test_bf16_qkv_proj_with_rope(self):
        dtype = torch.bfloat16
        hidden_states = torch.randn(B, hidden_size, dtype=dtype) / hidden_size
        q_input = torch.empty(
            B, num_heads, kv_lora_rank + qk_rope_head_dim, dtype=dtype
        )
        q_a_proj_weight = torch.randn(q_lora_rank, hidden_size, dtype=dtype) * 0.1
        norm_weight1 = torch.randn(q_lora_rank, dtype=dtype)
        q_b_proj_weight = (
            torch.randn(num_heads * qk_head_dim, q_lora_rank, dtype=dtype) * 0.1
        )
        w_kc = torch.randn(num_heads, kv_lora_rank, qk_nope_head_dim, dtype=dtype) * 0.1
        kv_a_proj_weight = (
            torch.randn(kv_lora_rank + qk_rope_head_dim, hidden_size, dtype=dtype) * 0.1
        )
152
        fused_weight = torch.cat([q_a_proj_weight, kv_a_proj_weight], dim=0)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        norm_weight2 = torch.randn(kv_lora_rank, dtype=dtype)
        pos = torch.randint(10, 100, (B,))
        cos_sin_cache = torch.randn(100, rotary_dim, dtype=dtype)
        q_ref, k_ref, v_ref = native_torch(
            q_input,
            hidden_states,
            q_a_proj_weight,
            norm_weight1,
            q_b_proj_weight,
            w_kc.transpose(1, 2),
            kv_a_proj_weight,
            norm_weight2,
            pos,
            cos_sin_cache,
        )
        qa_packed = convert_weight_packed(q_a_proj_weight)
        qb_packed = convert_weight_packed(q_b_proj_weight)
        kva_packed = convert_weight_packed(kv_a_proj_weight)
        wkc_packed = convert_weight_packed(w_kc)
172
        fused_weight_packed = convert_weight_packed(fused_weight)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        q_out, k_out, v_out = qkv_proj_with_rope(
            hidden_states,
            qa_packed,
            qb_packed,
            kva_packed,
            wkc_packed,
            norm_weight1,
            norm_weight2,
            pos,
            cos_sin_cache,
            eps,
            False,
            False,
            None,
            None,
            None,
            True,
            None,
        )
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        fused_q_out, fused_k_out, fused_v_out = qkv_proj_with_rope_fused_weight(
            hidden_states,
            fused_weight_packed,
            qb_packed,
            wkc_packed,
            norm_weight1,
            norm_weight2,
            pos,
            cos_sin_cache,
            eps,
            False,
            False,
            None,
            None,
            True,
            None,
            q_lora_rank,
            kv_lora_rank,
            qk_rope_head_dim,
        )
213
214
215
216
        atol = rtol = precision[q_ref.dtype]
        self.assertTrue(torch.allclose(q_ref, q_out, atol=atol, rtol=rtol))
        self.assertTrue(torch.allclose(k_ref, k_out, atol=atol, rtol=rtol))
        self.assertTrue(torch.allclose(v_ref, v_out, atol=atol, rtol=rtol))
217
218
219
        self.assertTrue(torch.allclose(fused_q_out, q_out))
        self.assertTrue(torch.allclose(fused_k_out, k_out))
        self.assertTrue(torch.allclose(fused_v_out, v_out))
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

    def test_int8_qkv_proj_with_rope(self):
        dtype = torch.bfloat16
        hidden_states = torch.randn(B, hidden_size, dtype=dtype) / hidden_size
        q_input = torch.empty(
            B, num_heads, kv_lora_rank + qk_rope_head_dim, dtype=dtype
        )
        q_a_proj_weight = torch.randn(q_lora_rank, hidden_size, dtype=dtype) * 0.1
        norm_weight1 = torch.randn(q_lora_rank, dtype=dtype)
        q_b_proj_weight = (
            torch.randn(num_heads * qk_head_dim, q_lora_rank, dtype=dtype) * 0.1
        )
        w_kc = torch.randn(num_heads, kv_lora_rank, qk_nope_head_dim, dtype=dtype) * 0.1
        kv_a_proj_weight = (
            torch.randn(kv_lora_rank + qk_rope_head_dim, hidden_size, dtype=dtype) * 0.1
        )
        norm_weight2 = torch.randn(kv_lora_rank, dtype=dtype)
        pos = torch.randint(10, 100, (B,))
        cos_sin_cache = torch.randn(100, rotary_dim, dtype=dtype)

        w1_q, w1_s = per_token_quant_int8(q_a_proj_weight)
        w2_q, w2_s = per_token_quant_int8(q_b_proj_weight)
        w3_q, w3_s = per_token_quant_int8(kv_a_proj_weight)
        q_ref, k_ref, v_ref = native_torch_int8(
            q_input,
            hidden_states,
            w1_q,
            w1_s,
            norm_weight1,
            w2_q,
            w2_s,
            w_kc.transpose(1, 2),
            w3_q,
            w3_s,
            norm_weight2,
            pos,
            cos_sin_cache,
        )
        w1_q_packed = convert_weight_packed(w1_q)
        w2_q_packed = convert_weight_packed(w2_q)
        w3_q_packed = convert_weight_packed(w3_q)
        wkc_packed = convert_weight_packed(w_kc)
        q_out, k_out, v_out = qkv_proj_with_rope(
            hidden_states,
            w1_q_packed,
            w2_q_packed,
            w3_q_packed,
            wkc_packed,
            norm_weight1,
            norm_weight2,
            pos,
            cos_sin_cache,
            eps,
            True,
            False,
            w1_s,
            w2_s,
            w3_s,
            True,
            None,
        )
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        fused_weight = torch.cat([w1_q, w3_q], dim=0)
        fused_weight_s = torch.cat([w1_s, w3_s], dim=0)
        w_fused_q_packed = convert_weight_packed(fused_weight)
        fused_q_out, fused_k_out, fused_v_out = qkv_proj_with_rope_fused_weight(
            hidden_states,
            w_fused_q_packed,
            w2_q_packed,
            wkc_packed,
            norm_weight1,
            norm_weight2,
            pos,
            cos_sin_cache,
            eps,
            True,
            False,
            fused_weight_s,
            w2_s,
            True,
            None,
            q_lora_rank,
            kv_lora_rank,
            qk_rope_head_dim,
        )
304
305
306
307
        atol = rtol = precision[q_ref.dtype]
        self.assertTrue(torch.allclose(q_ref, q_out, atol=atol, rtol=rtol))
        self.assertTrue(torch.allclose(k_ref, k_out, atol=atol, rtol=rtol))
        self.assertTrue(torch.allclose(v_ref, v_out, atol=atol, rtol=rtol))
308
309
310
        self.assertTrue(torch.allclose(fused_q_out, q_out))
        self.assertTrue(torch.allclose(fused_k_out, k_out))
        self.assertTrue(torch.allclose(fused_v_out, v_out))
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

    def test_fp8_qkv_proj_with_rope(self):
        dtype = torch.bfloat16
        hidden_states = torch.randn(B, hidden_size, dtype=dtype) / hidden_size
        q_input = torch.empty(
            B, num_heads, kv_lora_rank + qk_rope_head_dim, dtype=dtype
        )
        q_a_proj_weight = torch.randn(q_lora_rank, hidden_size, dtype=dtype) * 0.1
        norm_weight1 = torch.randn(q_lora_rank, dtype=dtype)
        q_b_proj_weight = (
            torch.randn(num_heads * qk_head_dim, q_lora_rank, dtype=dtype) * 0.1
        )
        w_kc = torch.randn(num_heads, kv_lora_rank, qk_nope_head_dim, dtype=dtype) * 0.1
        kv_a_proj_weight = (
            torch.randn(kv_lora_rank + qk_rope_head_dim, hidden_size, dtype=dtype) * 0.1
        )
        norm_weight2 = torch.randn(kv_lora_rank, dtype=dtype)
        pos = torch.randint(10, 100, (B,))
        cos_sin_cache = torch.randn(100, rotary_dim, dtype=dtype)

        scale_block_size_N = 128
        scale_block_size_K = 128
        fp8_q_a_proj_weight, q_a_proj_weight_scale_inv, q_a_proj_weight_dq = (
            convert_weight(
                q_a_proj_weight,
                [scale_block_size_N, scale_block_size_K],
                torch.bfloat16,
            )
        )
        fp8_q_b_proj_weight, q_b_proj_weight_scale_inv, q_b_proj_weight_dq = (
            convert_weight(
                q_b_proj_weight,
                [scale_block_size_N, scale_block_size_K],
                torch.bfloat16,
            )
        )
        (
            fp8_kv_a_proj_with_mqa_weight,
            kv_a_proj_with_mqa_weight_scale_inv,
            kv_a_proj_with_mqa_weight_dq,
        ) = convert_weight(
            kv_a_proj_weight, [scale_block_size_N, scale_block_size_K], torch.bfloat16
        )
        q_ref, k_ref, v_ref = native_torch(
            q_input,
            hidden_states,
            q_a_proj_weight_dq,
            norm_weight1,
            q_b_proj_weight_dq,
            w_kc.transpose(1, 2),
            kv_a_proj_with_mqa_weight_dq,
            norm_weight2,
            pos,
            cos_sin_cache,
        )
366
367
368
        fp8_q_a_proj_weight_packed = convert_weight_packed(fp8_q_a_proj_weight)
        fp8_q_b_proj_weight_packed = convert_weight_packed(fp8_q_b_proj_weight)
        fp8_kv_a_proj_with_mqa_weight_packed = convert_weight_packed(
369
370
371
372
373
            fp8_kv_a_proj_with_mqa_weight
        )
        w_kc = convert_weight_packed(w_kc)
        q_out, k_out, v_out = qkv_proj_with_rope(
            hidden_states,
374
375
376
            fp8_q_a_proj_weight_packed,
            fp8_q_b_proj_weight_packed,
            fp8_kv_a_proj_with_mqa_weight_packed,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            w_kc,
            norm_weight1,
            norm_weight2,
            pos,
            cos_sin_cache,
            eps,
            False,
            True,
            q_a_proj_weight_scale_inv.float(),
            q_b_proj_weight_scale_inv.float(),
            kv_a_proj_with_mqa_weight_scale_inv.float(),
            True,
            [scale_block_size_N, scale_block_size_K],
        )
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        fused_weight = torch.cat(
            [fp8_q_a_proj_weight, fp8_kv_a_proj_with_mqa_weight], dim=0
        )
        fused_weight_s = torch.cat(
            [q_a_proj_weight_scale_inv, kv_a_proj_with_mqa_weight_scale_inv], dim=0
        )
        fused_weight_packed = convert_weight_packed(fused_weight)
        fused_q_out, fused_k_out, fused_v_out = qkv_proj_with_rope_fused_weight(
            hidden_states,
            fused_weight_packed,
            fp8_q_b_proj_weight_packed,
            w_kc,
            norm_weight1,
            norm_weight2,
            pos,
            cos_sin_cache,
            eps,
            False,
            True,
            fused_weight_s.float(),
            q_b_proj_weight_scale_inv.float(),
            True,
            [scale_block_size_N, scale_block_size_K],
            q_lora_rank,
            kv_lora_rank,
            qk_rope_head_dim,
        )
419
        atol = rtol = precision[q_ref.dtype]
420
421
422
423
424
425
426
427
428
        # Due to the change in multiplication order, the error is amplified.
        # In the model, with fewer layers, this doesn't cause issues, but in
        # tests with more layers, we need to enlarge the tolerance to pass the tests.
        torch.testing.assert_close(q_ref, q_out, atol=1e-1, rtol=1e-1)
        torch.testing.assert_close(k_ref, k_out, atol=atol, rtol=rtol)
        torch.testing.assert_close(v_ref, v_out, atol=atol, rtol=rtol)
        torch.testing.assert_close(fused_q_out, q_out)
        torch.testing.assert_close(fused_k_out, k_out)
        torch.testing.assert_close(fused_v_out, v_out)
429
430
431
432


if __name__ == "__main__":
    unittest.main()