vec.h 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#pragma once

#if defined(__AVX512F__) && defined(__AVX512BF16__) && defined(__AMX_BF16__)
#define CPU_CAPABILITY_AVX512
#endif

#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>

namespace {

using namespace at::vec;

template <typename scalar_t, typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
inline Vectorized<scalar_t> convert_from_float_ext(const Vectorized<float>& a, const Vectorized<float>& b) {
  return at::vec::convert_from_float<scalar_t>(a, b);
}

#if defined(CPU_CAPABILITY_AVX512)

// `at::vec::convert_from_float<>` from PyTorch doesn't have avx512-bf16 intrinsics
// use native instruction for bfloat16->float32 conversion
template <>
inline Vectorized<at::BFloat16>
convert_from_float_ext<at::BFloat16>(const Vectorized<float>& a, const Vectorized<float>& b) {
  return (__m512i)(_mm512_cvtne2ps_pbh(__m512(b), __m512(a)));
}

#define CVT_BF16_TO_FP32(a) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(a), 16))

#define CVT_FP16_TO_FP32(a) _mm512_cvtps_ph(a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// this doesn't handle NaN.
inline __m512bh cvt_e4m3_bf16_intrinsic_no_nan(__m256i fp8_vec) {
  const __m512i x = _mm512_cvtepu8_epi16(fp8_vec);

  const __m512i mant = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x07)), 4);
  const __m512i raw_exp = _mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x78)), 3);
  const __m512i exp = _mm512_slli_epi16(_mm512_add_epi16(raw_exp, _mm512_set1_epi16(120)), 7);
  const __m512i nonsign = _mm512_or_si512(exp, mant);

  const __m512i sign = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(0x80)), 8);
  const __m512i combined = _mm512_or_si512(nonsign, sign);

  const __mmask32 is_nonzero = _mm512_cmpneq_epi16_mask(x, _mm512_setzero_si512());
  return (__m512bh)_mm512_maskz_mov_epi16(is_nonzero, combined);
}

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
inline __m512bh cvt_e4m3_bf16_intrinsic_without_denorm(__m256i fp8_vec) {
  // The following conversion is without denorm behavior, that is to say,
  //   Max subnorm   : S.0000.111 = 0.875 ∗ 2**(−6)
  //   Min subnorm   : S.0000.001 = 2**(−9)
  // 0.0019 ~ 0.0137 cannot be converted correctly.
  __m512i x = _mm512_cvtepu8_epi16(fp8_vec);
  auto mask = _mm512_cmpneq_epi16_mask(
      _mm512_and_si512(x, _mm512_set1_epi16(127)),
      _mm512_setzero_si512());  // mask = x & 0x7f
  auto mask_nan = _mm512_cmpneq_epi16_mask(
      _mm512_and_si512(x, _mm512_set1_epi16(127)),
      _mm512_set1_epi16(127));                                                      // mask_nan = x & 0x7f
  auto mantissa = _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(7)), 4);  // mantissa = (x & 7) << 4
  auto exponent = _mm512_add_epi16(
      _mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(120)), 3),
      _mm512_set1_epi16(120));  // exponent = (((x >> 3) & 15) + 120)
  auto nonsign = _mm512_maskz_mov_epi16(mask, _mm512_or_si512(mantissa, _mm512_slli_epi16(exponent, 7)));
  nonsign = _mm512_mask_mov_epi16(_mm512_set1_epi16(0x7fff), mask_nan, nonsign);  // deal with Nan
  return (__m512bh)(_mm512_or_si512(
      nonsign,
      _mm512_slli_epi16(
          _mm512_and_si512(x, _mm512_set1_epi16(128)),
          8)));  // add sign (x & 128) << 8
}

inline __m512bh cvt_e4m3_bf16_intrinsic_with_denorm(__m256i fp8_vec) {
  __m512i x = _mm512_cvtepu8_epi16(fp8_vec);
  __m512i lg2mant = _mm512_mask_mov_epi16(
      _mm512_mask_mov_epi16(
          _mm512_setzero_si512(), _mm512_test_epi16_mask(x, _mm512_set1_epi16(2)), _mm512_set1_epi16(1)),
      _mm512_test_epi16_mask(x, _mm512_set1_epi16(4)),
      _mm512_set1_epi16(2));
  return (__m512bh)(_mm512_or_si512(
      _mm512_maskz_mov_epi16(
          _mm512_cmpneq_epi16_mask(_mm512_and_si512(x, _mm512_set1_epi16(127)), _mm512_setzero_si512()),
          _mm512_mask_blend_epi16(
              _mm512_test_epi16_mask(x, _mm512_set1_epi16(120)),
              _mm512_or_si512(
                  _mm512_and_si512(
                      _mm512_sllv_epi16(
                          _mm512_and_si512(x, _mm512_set1_epi16(3)), _mm512_sub_epi16(_mm512_set1_epi16(7), lg2mant)),
                      _mm512_set1_epi16(0x007f)),
                  _mm512_slli_epi16(_mm512_add_epi16(lg2mant, _mm512_set1_epi16(118)), 7)),
              _mm512_or_si512(
                  _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(7)), 4),
                  _mm512_slli_epi16(
                      _mm512_add_epi16(
                          _mm512_srli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(120)), 3), _mm512_set1_epi16(120)),
                      7)))),
      _mm512_slli_epi16(_mm512_and_si512(x, _mm512_set1_epi16(128)), 8)));
}

inline __m512bh CVT_FP8_TO_BF16(__m256i a) {
#ifdef SGLANG_CPU_FP8_CVT_FTZ
103
  return cvt_e4m3_bf16_intrinsic_no_nan(a);
104
105
106
107
108
#else
  return cvt_e4m3_bf16_intrinsic_with_denorm(a);
#endif
}

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#endif

// vector to scalar reduction
#if defined(CPU_CAPABILITY_AVX512) && 0
inline float vec_reduce_sum(const Vectorized<float>& a) {
  return _mm512_reduce_add_ps(__m512(a));
}

inline float vec_reduce_max(const Vectorized<float>& a) {
  return _mm512_reduce_max_ps(__m512(a));
}
#else
inline float vec_reduce_sum(const Vectorized<float>& a) {
  return vec_reduce_all([](Vectorized<float>& x, Vectorized<float>& y) { return x + y; }, a);
}

inline float vec_reduce_max(const Vectorized<float>& a) {
  return vec_reduce_all([](Vectorized<float>& x, Vectorized<float>& y) { return maximum(x, y); }, a);
}
#endif

// https://github.com/InternLM/lmdeploy/blob/086481ed84b59bee3b8e4274e5fc69620040c048/lmdeploy/pytorch/kernels/cuda/w8a8_triton_kernels.py#L282
template <typename scalar_t>
inline void
quantize_row_int8(uint8_t* __restrict__ Aq, float& As, const scalar_t* __restrict__ A, int64_t K, float eps = 1e-7) {
  float amax = 0.f;  // absolute max
  for (int64_t k = 0; k < K; ++k) {
    const float val = static_cast<float>(A[k]);
    amax = std::max(amax, std::abs(val));
  }

  amax = std::max(amax, eps);
  const float scale = amax / 127;
  const float inv_scale = 127 / amax;

  for (int64_t k = 0; k < K; ++k) {
    const float val = static_cast<float>(A[k]) * inv_scale;
    Aq[k] = (uint8_t)(std::round(val)) + 128;
  }
  As = scale;
}

#if defined(CPU_CAPABILITY_AVX512)
template <>
inline void quantize_row_int8<at::BFloat16>(
    uint8_t* __restrict__ Aq, float& As, const at::BFloat16* __restrict__ A, int64_t K, float eps) {
  const __m512 signBit = _mm512_set1_ps(-0.0f);
  const __m512i off = _mm512_set1_epi32(128);

  // K is 32x, no remainder
  float amax = 0.f;
  __m512 vamax0 = _mm512_set1_ps(0.f);
  __m512 vamax1 = _mm512_set1_ps(0.f);
  for (int64_t k = 0; k < K; k += 32) {
    __m512i va = _mm512_loadu_si512((void*)(A + k));
    __m512 va0 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 0));
    __m512 va1 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 1));
    vamax0 = _mm512_max_ps(vamax0, _mm512_andnot_ps(signBit, va0));
    vamax1 = _mm512_max_ps(vamax1, _mm512_andnot_ps(signBit, va1));
  }
  amax = _mm512_reduce_max_ps(_mm512_max_ps(vamax0, vamax1));
  amax = std::max(amax, eps);
  const float scale = amax / 127;
  const float inv_scale = 127 / amax;
  const __m512 vd = _mm512_set1_ps(inv_scale);

  for (int64_t k = 0; k < K; k += 32) {
    __m512i va = _mm512_loadu_si512((void*)(A + k));
    __m512 va0 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 0));
    __m512 va1 = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(va, 1));
    va0 = _mm512_mul_ps(va0, vd);
    va1 = _mm512_mul_ps(va1, vd);
    va0 = _mm512_roundscale_ps(va0, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
    va1 = _mm512_roundscale_ps(va1, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
    __m128i i0 = _mm512_cvtepi32_epi8(_mm512_add_epi32(_mm512_cvtps_epi32(va0), off));
    __m128i i1 = _mm512_cvtepi32_epi8(_mm512_add_epi32(_mm512_cvtps_epi32(va1), off));
    _mm256_storeu_si256(reinterpret_cast<__m256i*>(Aq + k), _mm256_set_m128i(i1, i0));
  }
  As = scale;
}
#endif

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// transpose utils
// taken from my PR in ggml: https://github.com/ggml-org/llama.cpp/pull/8998
#if defined(CPU_CAPABILITY_AVX512)
inline void transpose_16x16_32bit(__m512i* v) {
  __m512i v1[16];
  v1[0] = _mm512_unpacklo_epi32(v[0], v[1]);
  v1[1] = _mm512_unpackhi_epi32(v[0], v[1]);
  v1[2] = _mm512_unpacklo_epi32(v[2], v[3]);
  v1[3] = _mm512_unpackhi_epi32(v[2], v[3]);
  v1[4] = _mm512_unpacklo_epi32(v[4], v[5]);
  v1[5] = _mm512_unpackhi_epi32(v[4], v[5]);
  v1[6] = _mm512_unpacklo_epi32(v[6], v[7]);
  v1[7] = _mm512_unpackhi_epi32(v[6], v[7]);
  v1[8] = _mm512_unpacklo_epi32(v[8], v[9]);
  v1[9] = _mm512_unpackhi_epi32(v[8], v[9]);
  v1[10] = _mm512_unpacklo_epi32(v[10], v[11]);
  v1[11] = _mm512_unpackhi_epi32(v[10], v[11]);
  v1[12] = _mm512_unpacklo_epi32(v[12], v[13]);
  v1[13] = _mm512_unpackhi_epi32(v[12], v[13]);
  v1[14] = _mm512_unpacklo_epi32(v[14], v[15]);
  v1[15] = _mm512_unpackhi_epi32(v[14], v[15]);

  v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]);
  v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]);
  v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]);
  v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]);
  v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]);
  v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]);
  v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]);
  v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]);
  v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]);
  v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]);
  v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]);
  v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]);
  v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]);
  v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]);
  v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]);
  v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]);

  v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88);
  v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88);
  v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88);
  v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88);
  v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd);
  v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd);
  v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd);
  v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd);
  v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88);
  v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88);
  v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88);
  v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88);
  v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd);
  v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd);
  v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd);
  v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd);

  v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88);
  v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88);
  v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88);
  v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88);
  v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88);
  v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88);
  v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88);
  v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88);
  v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd);
  v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd);
  v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd);
  v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd);
  v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd);
  v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd);
  v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd);
  v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd);
}

// remove warning : ignoring attributes on template argument ‘__m512i’ [-Wignored-attributes]
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-attributes"

// transpose from [2, 32] to [32, 2]
inline std::tuple<__m512i, __m512i> transpose_2x32_16bit(__m512i r0, __m512i r1) {
  // r0: {a0, a1, ..., a31}
  // r1: {b0, b1, ..., b31}
  //
  // d0: {a0,   b0, ..., a15, b15}
  // d1: {a16, b16, ..., a31, b31}
  //
  __m512i d0 = _mm512_unpacklo_epi16(r0, r1);
  __m512i d1 = _mm512_unpackhi_epi16(r0, r1);
  r0 = _mm512_shuffle_i32x4(d0, d1, 0x88);
  r1 = _mm512_shuffle_i32x4(d0, d1, 0xdd);
  d0 = _mm512_shuffle_i32x4(r0, r1, 0x88);
  d1 = _mm512_shuffle_i32x4(r0, r1, 0xdd);
  return std::make_tuple(d0, d1);
}
#pragma GCC diagnostic pop

#endif

289
}  // anonymous namespace