shm.cpp 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include "shm.h"

#include <ATen/ATen.h>
#include <errno.h>
#include <fcntl.h>
#include <immintrin.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

// states for collectives
enum coll_state {
  coll_begin = 0,
  coll_allreduce_naive__copy_in_done,
  coll_allreduce_naive__reduce_done,
  // alternative state when allreduce is working on alternative buffer
  // of the double buffer.
  coll_alt1_allreduce_naive__copy_in_done,
  coll_alt2_allreduce_naive__copy_in_done,
  coll_alt1_allreduce_naive__reduce_done,
  coll_allgather_naive__copy_in_done,
  coll_alt1_allgather_naive__copy_in_done,
  coll_alt2_allgather_naive__copy_in_done,
};

// SHM building blocks
struct SharedData {
  const char* name;
  int descriptor;
  void* bytes;
  size_t nbytes;
};

void shared_open(SharedData* data, const char* name, size_t nbytes) {
  int d = shm_open(name, O_RDWR, S_IRUSR | S_IWUSR);
  if (d != -1) {
    void* bytes = mmap(NULL, nbytes, PROT_READ | PROT_WRITE, MAP_SHARED, d, 0);
    data->name = name;
    data->descriptor = d;
    data->bytes = bytes;
    data->nbytes = nbytes;
  } else {
    if (errno != ENOENT) {
      // don't print if shm can not be found because we want to loop over from
      // caller again until the other ranks created the shm
      printf("shared_open %s failed, errno=%d\n", name, errno);
    }
    data->descriptor = -1;
  }
}

void shared_create(SharedData* data, const char* name, void* bytes, size_t nbytes) {
  int d = shm_open(name, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
  if (d != -1) {
57
58
    nbytes = write(d, bytes, nbytes);
    if (nbytes > 0) {
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
      shared_open(data, name, nbytes);
    }
  } else {
    printf("shared_create %s failed\n", name);
  }
}

static int world_size;

// SHM based allreduce helper functions
// buffer that holds shm name
#define NAME_BUF_SIZE 1000
#define MAX_BUF_SIZE 1048576 * 32
#define NAIVE_ALLREDUCE_THRESHOLD 1048576
#define SHM_BUFFER_NAME "deepspeed_allreduce_buffer"
struct allreduce_workspace {
  enum coll_state states[2];  // idx=0 -- state for symmetric_naive_all_reduce
                              // idx=1 -- state for distributed_naive_all_reduce
  // double buffer to avoid syncing between rounds
  // offset=0 -- 2*NAIVE_ALLREDUCE_THRESHOLD : buffer for
  // symmetric_naive_all_reduce after that : buffer for
  // distributed_naive_all_reduce
  char buffer[2 * NAIVE_ALLREDUCE_THRESHOLD + 2 * MAX_BUF_SIZE];
};

#define BUFFER0_OFFSET(current_buffer) current_buffer* NAIVE_ALLREDUCE_THRESHOLD
#define BUFFER1_OFFSET(current_buffer) 2 * NAIVE_ALLREDUCE_THRESHOLD + current_buffer* MAX_BUF_SIZE

struct allreduce_workspace** workspace;

// buffer for small messages, double buffer
char** symmetric_buffer[2];
// buffer for large messages, double buffer
char** distributed_buffer[2];

void wait_buffer_state_until_2(int index, enum coll_state state0, enum coll_state state1, int state_group) {
  volatile enum coll_state* state_ptr = &(workspace[index]->states[state_group]);

  while (1) {
    volatile enum coll_state cur_state = *state_ptr;
    if (cur_state == state0 || cur_state == state1) break;
  }
}

__m512 cvt_bf16_to_fp32(const __m256i src) __attribute__((target("avx512bw")));
inline __m512 cvt_bf16_to_fp32(const __m256i src) {
  auto y = _mm512_cvtepu16_epi32(src);
  return _mm512_castsi512_ps(_mm512_bslli_epi128(y, 2));
}

inline __m256i cvt_fp32_to_bf16(const __m512 src) __attribute__((target("avx512bw")));
inline __m256i cvt_fp32_to_bf16(const __m512 src) {
  __m512i value = _mm512_castps_si512(src);
  __m512i nan = _mm512_set1_epi32(0xffff);
  auto mask_value = _mm512_cmp_ps_mask(src, src, _CMP_ORD_Q);
  __m512i ones = _mm512_set1_epi32(0x1);
  __m512i vec_bias = _mm512_set1_epi32(0x7fff);
  // uint32_t lsb = (input >> 16) & 1;
  auto t_value = _mm512_and_si512(_mm512_srli_epi32(value, 16), ones);
  // uint32_t rounding_bias = 0x7fff + lsb;
  t_value = _mm512_add_epi32(t_value, vec_bias);
  // input += rounding_bias;
  t_value = _mm512_add_epi32(t_value, value);
  // input = input >> 16;
  t_value = _mm512_srli_epi32(t_value, 16);
  // Check NaN before converting back to bf16
  t_value = _mm512_mask_blend_epi32(mask_value, nan, t_value);
  return _mm512_cvtusepi32_epi16(t_value);
}

__m512 cvt_fp16_to_fp32(const __m256i src) __attribute__((target("avx512bw")));
inline __m512 cvt_fp16_to_fp32(const __m256i src) {
  return _mm512_cvtph_ps(src);
}

inline __m256i cvt_fp32_to_fp16(const __m512 src) __attribute__((target("avx512bw")));
inline __m256i cvt_fp32_to_fp16(const __m512 src) {
  return _mm512_cvtps_ph(src, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
}

void reduce_bf16_buffers(int start_elements, int num_elements, char* to_buffer, char** buffers)
    __attribute__((target("avx512bw")));

void reduce_fp16_buffers(int start_elements, int num_elements, char* to_buffer, char** buffers)
    __attribute__((target("avx512bw")));

void reduce_fp32_buffers(int start_elements, int num_elements, char* to_buffer, char** buffers)
    __attribute__((target("avx512bw")));

void reduce_all_buffers(
    int start_elements,
    int num_elements,
    c10::ScalarType scalar_type,
    int to_buffer_idx,
    char* to_buffer,
    char** buffers) {
  switch (scalar_type) {
    case c10::ScalarType::BFloat16:
      reduce_bf16_buffers(start_elements, num_elements, to_buffer, buffers);
      break;
    case c10::ScalarType::Half:
      reduce_fp16_buffers(start_elements, num_elements, to_buffer, buffers);
      break;
    case c10::ScalarType::Float:
      reduce_fp32_buffers(start_elements, num_elements, to_buffer, buffers);
      break;
    default:
      assert(!"Should not get here");
  }
}

#define CVT_ADD_BF16(x)                                                                  \
  do {                                                                                   \
    auto in##x##_val = cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)(buffers[x] + i))); \
    inout_val = _mm512_add_ps(inout_val, in##x##_val);                                   \
  } while (0)

// Reduce functions down below use vectorized algorithm, the number of bytes
// processed each iteration depends on vector length.  256bit vector ==> 32
// bytes, 512bit vector ==> 64 bytes If you change implementation of
// reduce_bf16_buffers, etc. , check whether this number needs to be changed
#define VECTOR_LENGTH_IN_BYTES 32

void reduce_bf16_buffers(int start_elements, int num_elements, char* to_buffer, char** buffers) {
  const int element_size = 2;
  const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
  int main_elements = num_elements - (num_elements % vector_length);
  int remain_elements = num_elements % vector_length;

  // process aligned part
#pragma omp parallel for
  for (int i = start_elements * element_size; i < (start_elements + main_elements) * element_size;
       i += VECTOR_LENGTH_IN_BYTES) {
    auto inout_val = cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)(buffers[0] + i)));
    switch (world_size) {
      case 16:
        CVT_ADD_BF16(15);
      case 15:
        CVT_ADD_BF16(14);
      case 14:
        CVT_ADD_BF16(13);
      case 13:
        CVT_ADD_BF16(12);
      case 12:
        CVT_ADD_BF16(11);
      case 11:
        CVT_ADD_BF16(10);
      case 10:
        CVT_ADD_BF16(9);
      case 9:
        CVT_ADD_BF16(8);
      case 8:
        CVT_ADD_BF16(7);
      case 7:
        CVT_ADD_BF16(6);
      case 6:
        CVT_ADD_BF16(5);
      case 5:
        CVT_ADD_BF16(4);
      case 4:
        CVT_ADD_BF16(3);
      case 3:
        CVT_ADD_BF16(2);
      case 2:
        CVT_ADD_BF16(1);
      case 1:
        break;
      default:
        for (int j = 1; j < world_size; j++) {
          auto in_val = cvt_bf16_to_fp32(_mm256_loadu_si256((__m256i*)(buffers[j] + i)));
          inout_val = _mm512_add_ps(inout_val, in_val);
        }
    }
    _mm256_storeu_si256((__m256i*)(to_buffer + i), cvt_fp32_to_bf16(inout_val));
  }

  // process remaining part
  int i = (start_elements + main_elements) * element_size;
  while (remain_elements > 0) {
    float val = 0.0f;
    for (int j = 0; j < world_size; j++) {
      val += *(at::BFloat16*)(buffers[j] + i);
    }
    *(at::BFloat16*)(to_buffer + i) = val;
    remain_elements--;
    i += element_size;
  }
}

#define CVT_ADD_FP16(x)                                                                  \
  do {                                                                                   \
    auto in##x##_val = cvt_fp16_to_fp32(_mm256_loadu_si256((__m256i*)(buffers[x] + i))); \
    inout_val = _mm512_add_ps(inout_val, in##x##_val);                                   \
  } while (0)

void reduce_fp16_buffers(int start_elements, int num_elements, char* to_buffer, char** buffers) {
  const int element_size = 2;
  const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
  int main_elements = num_elements - (num_elements % vector_length);
  int remain_elements = num_elements % vector_length;

  // process aligned part
#pragma omp parallel for
  for (int i = start_elements * element_size; i < (start_elements + main_elements) * element_size;
       i += VECTOR_LENGTH_IN_BYTES) {
    auto inout_val = cvt_fp16_to_fp32(_mm256_loadu_si256((__m256i*)(buffers[0] + i)));
    switch (world_size) {
      case 16:
        CVT_ADD_FP16(15);
      case 15:
        CVT_ADD_FP16(14);
      case 14:
        CVT_ADD_FP16(13);
      case 13:
        CVT_ADD_FP16(12);
      case 12:
        CVT_ADD_FP16(11);
      case 11:
        CVT_ADD_FP16(10);
      case 10:
        CVT_ADD_FP16(9);
      case 9:
        CVT_ADD_FP16(8);
      case 8:
        CVT_ADD_FP16(7);
      case 7:
        CVT_ADD_FP16(6);
      case 6:
        CVT_ADD_FP16(5);
      case 5:
        CVT_ADD_FP16(4);
      case 4:
        CVT_ADD_FP16(3);
      case 3:
        CVT_ADD_FP16(2);
      case 2:
        CVT_ADD_FP16(1);
      case 1:
        break;
      default:
        for (int j = 1; j < world_size; j++) {
          auto in_val = cvt_fp16_to_fp32(_mm256_loadu_si256((__m256i*)(buffers[j] + i)));
          inout_val = _mm512_add_ps(inout_val, in_val);
        }
    }
    _mm256_storeu_si256((__m256i*)(to_buffer + i), cvt_fp32_to_fp16(inout_val));
  }

  // process remaining part
  int i = (start_elements + main_elements) * element_size;
  while (remain_elements > 0) {
    float val = 0.0f;
    for (int j = 0; j < world_size; j++) {
      val += *(at::Half*)(buffers[j] + i);
    }
    *(at::Half*)(to_buffer + i) = val;
    remain_elements--;
    i += element_size;
  }
}

#define CVT_ADD_F32(x)                                            \
  do {                                                            \
    auto in##x##_val = _mm256_loadu_ps((float*)(buffers[x] + i)); \
    inout_val = _mm256_add_ps(inout_val, in##x##_val);            \
  } while (0)

void reduce_fp32_buffers(int start_elements, int num_elements, char* to_buffer, char** buffers) {
  const int element_size = 4;
  const int vector_length = VECTOR_LENGTH_IN_BYTES / element_size;
  int main_elements = num_elements - (num_elements % vector_length);
  int remain_elements = num_elements % vector_length;

  // process aligned part
#pragma omp parallel for
  for (int i = start_elements * element_size; i < (start_elements + main_elements) * element_size;
       i += VECTOR_LENGTH_IN_BYTES) {
    auto inout_val = _mm256_loadu_ps((float*)(buffers[0] + i));
    switch (world_size) {
      case 16:
        CVT_ADD_F32(15);
      case 15:
        CVT_ADD_F32(14);
      case 14:
        CVT_ADD_F32(13);
      case 13:
        CVT_ADD_F32(12);
      case 12:
        CVT_ADD_F32(11);
      case 11:
        CVT_ADD_F32(10);
      case 10:
        CVT_ADD_F32(9);
      case 9:
        CVT_ADD_F32(8);
      case 8:
        CVT_ADD_F32(7);
      case 7:
        CVT_ADD_F32(6);
      case 6:
        CVT_ADD_F32(5);
      case 5:
        CVT_ADD_F32(4);
      case 4:
        CVT_ADD_F32(3);
      case 3:
        CVT_ADD_F32(2);
      case 2:
        CVT_ADD_F32(1);
      case 1:
        break;
      default:
        for (int j = 1; j < world_size; j++) {
          auto in_val = _mm256_loadu_ps((float*)(buffers[j] + i));
          inout_val = _mm256_add_ps(inout_val, in_val);
        }
    }
    _mm256_storeu_ps((float*)(to_buffer + i), inout_val);
  }

  // process remaining part
  int i = (start_elements + main_elements) * element_size;
  while (remain_elements > 0) {
    float val = 0.0f;
    for (int j = 0; j < world_size; j++) {
      val += *(float*)(buffers[j] + i);
    }
    *(float*)(to_buffer + i) = val;
    remain_elements--;
    i += element_size;
  }
}

static bool is_initialized = false;
static int world_rank;

395
void shm_initialize(int size, int rank, const char* addr_string, const char* port_string) {
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
  if (is_initialized) {
    return;
  }
  is_initialized = true;

  world_size = size;
  world_rank = rank;

  char shm_name_prefix[NAME_BUF_SIZE];
  char shm_name[NAME_BUF_SIZE];
  snprintf(shm_name_prefix, NAME_BUF_SIZE, "%s_%d_%s_%s", SHM_BUFFER_NAME, getuid(), addr_string, port_string);
  // create shared workspace for SHM based allreduce
  SharedData allreduce_buffer;
  // allocate workspace_buf for current rank
  struct allreduce_workspace* workspace_buf;
  struct allreduce_workspace* workspace_buf_other;
  workspace_buf = (struct allreduce_workspace*)malloc(sizeof(struct allreduce_workspace));
413
  snprintf(shm_name, NAME_BUF_SIZE, "%.900s_%d", shm_name_prefix, rank);
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
  shared_create(&allreduce_buffer, shm_name, workspace_buf, sizeof(struct allreduce_workspace));
  workspace_buf = (struct allreduce_workspace*)allreduce_buffer.bytes;
  workspace_buf->states[0] = coll_alt2_allreduce_naive__copy_in_done;
  workspace_buf->states[1] = coll_begin;

  // create the workspace pointer list
  workspace = (struct allreduce_workspace**)malloc(size * sizeof(struct allreduce_workspace*));
  symmetric_buffer[0] = (char**)malloc(size * sizeof(char**));
  symmetric_buffer[1] = (char**)malloc(size * sizeof(char**));
  distributed_buffer[0] = (char**)malloc(size * sizeof(char**));
  distributed_buffer[1] = (char**)malloc(size * sizeof(char**));

  // map shm of all ranks
  for (int i = 0; i < size; i++) {
    if (i != rank) {
429
      snprintf(shm_name, NAME_BUF_SIZE, "%.900s_%d", shm_name_prefix, i);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
      // printf("open %s, %d\n", shm_name, rank);
      do {
        shared_open(&allreduce_buffer, shm_name, sizeof(struct allreduce_workspace));
      } while (allreduce_buffer.descriptor == -1 && errno == ENOENT);
      workspace_buf_other = (struct allreduce_workspace*)allreduce_buffer.bytes;
      workspace[i] = workspace_buf_other;
    } else {
      workspace[i] = workspace_buf;
    }
    symmetric_buffer[0][i] = workspace[i]->buffer + BUFFER0_OFFSET(0);
    symmetric_buffer[1][i] = workspace[i]->buffer + BUFFER0_OFFSET(1);
    distributed_buffer[0][i] = workspace[i]->buffer + BUFFER1_OFFSET(0);
    distributed_buffer[1][i] = workspace[i]->buffer + BUFFER1_OFFSET(1);
  }
}

static void parallel_memcpy(void* to, void* from, size_t n_bytes) __attribute__((target("avx512bw")));
static void parallel_memcpy(void* to, void* from, size_t n_bytes) {
  auto aligned_bytes = n_bytes - (n_bytes % VECTOR_LENGTH_IN_BYTES);
  // process aligned part
#pragma omp parallel for
451
  for (size_t i = 0; i < aligned_bytes; i += VECTOR_LENGTH_IN_BYTES) {
452
453
454
455
456
    auto val = _mm256_loadu_si256((__m256i*)((char*)from + i));
    _mm256_storeu_si256((__m256i*)((char*)to + i), val);
  }

  // process remaining part
457
  for (size_t i = aligned_bytes; i < n_bytes; i++) {
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    *((char*)to + i) = *((char*)from + i);
  }
}

#define positive_mod(num, mod) ((((num) % (mod)) + (mod)) % (mod))
#define rank_mod(rank) positive_mod(rank, world_size)
size_t slice_size(size_t chunk_el, int slice_idx) {
  size_t slice_size = chunk_el / world_size;
  return slice_idx == world_size - 1 ? slice_size + (chunk_el % world_size) : slice_size;
}

char* slice_data(char* data_ptr, size_t chunk_el, int el_size, int slice_idx) {
  size_t slice_size = chunk_el / world_size;
  size_t el_offset = slice_size * slice_idx;
  return data_ptr + el_offset * el_size;
}

size_t slice_el_start(size_t chunk_el, int slice_idx) {
  size_t slice_size = chunk_el / world_size;
  return slice_size * slice_idx;
}

void symmetric_naive_all_reduce(char* data_ptr, c10::ScalarType scalar_type, size_t chunk_size, size_t chunk_el) {
  const int state_group = 0;
  static int current_buffer = 0;
  static int state_idx = 0;

485
486
487
  // init states to case 0 to get rid of "maybe-uninitialized" warning.
  enum coll_state copy_current = coll_allreduce_naive__copy_in_done;
  enum coll_state copy_next = coll_alt1_allreduce_naive__copy_in_done;
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

  switch (state_idx) {
    case 0:
      copy_current = coll_allreduce_naive__copy_in_done;
      copy_next = coll_alt1_allreduce_naive__copy_in_done;
      break;
    case 1:
      copy_current = coll_alt1_allreduce_naive__copy_in_done;
      copy_next = coll_alt2_allreduce_naive__copy_in_done;
      break;
    case 2:
      copy_current = coll_alt2_allreduce_naive__copy_in_done;
      copy_next = coll_allreduce_naive__copy_in_done;
      break;
    default:
      assert(!"Should not get here.");
  }
  state_idx = (state_idx + 1) % 3;

  parallel_memcpy(symmetric_buffer[current_buffer][world_rank], data_ptr, chunk_size);
  std::atomic_thread_fence(std::memory_order_release);
  workspace[world_rank]->states[state_group] = copy_current;

  for (int i = 0; i < world_size; i++) {
    // wait until the other rank copy the buffer
    if (i != world_rank) {
      wait_buffer_state_until_2(i, copy_current, copy_next, state_group);
    }
  }

  // each rank reduce the buffer independently so therre is no need for
  // synchronization afterward
  reduce_all_buffers(0, chunk_el, scalar_type, world_rank, data_ptr, symmetric_buffer[current_buffer]);

  // switch buffer
  current_buffer = 1 - current_buffer;
}

// naive allreduce distributed, each rank do naive reduce on its slice
void distributed_naive_reduce(char* data_ptr, c10::ScalarType scalar_type, size_t chunk_size, size_t chunk_el) {
  const int state_group = 1;
  static int current_buffer = 0;
  static int state_idx = 0;

532
533
534
535
  // init states to case 0 to get rid of "maybe-uninitialized" warning.
  enum coll_state copy_current = coll_allreduce_naive__copy_in_done;
  enum coll_state reduce_current = coll_allreduce_naive__reduce_done;
  enum coll_state copy_next = coll_alt1_allreduce_naive__copy_in_done;
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

  // similar to symmetric_naive_allreduce, but here we only need two sets of
  // states, because distributed naive reduce has two barriers in the algorithm
  switch (state_idx) {
    case 0:
      copy_current = coll_allreduce_naive__copy_in_done;
      reduce_current = coll_allreduce_naive__reduce_done;
      copy_next = coll_alt1_allreduce_naive__copy_in_done;
      break;
    case 1:
      copy_current = coll_alt1_allreduce_naive__copy_in_done;
      reduce_current = coll_alt1_allreduce_naive__reduce_done;
      copy_next = coll_allreduce_naive__copy_in_done;
      break;
    default:
      assert(!"Should not get here.");
  }
  state_idx = (state_idx + 1) % 2;

  int data_size = chunk_size / chunk_el;
  parallel_memcpy(distributed_buffer[current_buffer][world_rank], data_ptr, chunk_size);
  std::atomic_thread_fence(std::memory_order_release);
  workspace[world_rank]->states[state_group] = copy_current;

  for (int i = 0; i < world_size; i++) {
    // wait until all the other ranks copy the buffer
    if (i != world_rank) wait_buffer_state_until_2(i, copy_current, reduce_current, state_group);
  }

  // reduce scatter
  reduce_all_buffers(
      slice_el_start(chunk_el, world_rank),
      slice_size(chunk_el, world_rank),
      scalar_type,
      world_rank,
      distributed_buffer[current_buffer][world_rank],
      distributed_buffer[current_buffer]);
  std::atomic_thread_fence(std::memory_order_release);
  workspace[world_rank]->states[state_group] = reduce_current;

  for (int i = 0; i < world_size; i++) {
    // wait until all the other ranks reduce the buffer
    if (i != world_rank) wait_buffer_state_until_2(i, reduce_current, copy_next, state_group);
  }

  for (int i = 0; i < world_size; i++) {
    int rank = (i + world_rank) % world_size;
    parallel_memcpy(
        slice_data(data_ptr, chunk_el, data_size, rank),
        slice_data(distributed_buffer[current_buffer][rank], chunk_el, chunk_size / chunk_el, rank),
        slice_size(chunk_el, rank) * data_size);
  }

  current_buffer = 1 - current_buffer;
}

void all_reduce_outer_loop(torch::Tensor& data, size_t numel, int data_size) {
  for (int offset = 0; offset < data_size; offset += MAX_BUF_SIZE) {
    auto data_ptr = ((char*)(data.data_ptr()) + offset);
    size_t chunk_size = data_size - offset > MAX_BUF_SIZE ? MAX_BUF_SIZE : data_size - offset;
    size_t chunk_el = chunk_size / (data_size / numel);
    if (chunk_size < NAIVE_ALLREDUCE_THRESHOLD) {
      symmetric_naive_all_reduce(data_ptr, data.scalar_type(), chunk_size, chunk_el);
    } else {
      distributed_naive_reduce(data_ptr, data.scalar_type(), chunk_size, chunk_el);
    }
  }
}

void naive_all_gather(char* result_ptr, char* data_ptr, size_t res_stride, size_t chunk_size, size_t chunk_el) {
  const int state_group = 1;
  static int current_buffer = 0;
  static int state_idx = 0;

610
611
612
  // init states to case 0 to get rid of "maybe-uninitialized" warning.
  enum coll_state copy_current = coll_allgather_naive__copy_in_done;
  enum coll_state copy_next = coll_alt1_allgather_naive__copy_in_done;
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

  switch (state_idx) {
    case 0:
      copy_current = coll_allgather_naive__copy_in_done;
      copy_next = coll_alt1_allgather_naive__copy_in_done;
      break;
    case 1:
      copy_current = coll_alt1_allgather_naive__copy_in_done;
      copy_next = coll_alt2_allgather_naive__copy_in_done;
      break;
    case 2:
      copy_current = coll_alt2_allgather_naive__copy_in_done;
      copy_next = coll_allgather_naive__copy_in_done;
      break;
    default:
      assert(!"Should not get here.");
  }
  state_idx = (state_idx + 1) % 3;

  parallel_memcpy(distributed_buffer[current_buffer][world_rank], data_ptr, chunk_size);
  std::atomic_thread_fence(std::memory_order_release);
  workspace[world_rank]->states[state_group] = copy_current;

  for (int i = 0; i < world_size; i++) {
    // wait until all the other ranks copy the buffer
    if (i != world_rank) wait_buffer_state_until_2(i, copy_current, copy_next, state_group);
  }
  for (int i = 0; i < world_size; i++) {
    parallel_memcpy(result_ptr + i * res_stride, distributed_buffer[current_buffer][i], chunk_size);
  }
  current_buffer = 1 - current_buffer;
}

torch::Tensor& all_gather(torch::Tensor& result, torch::Tensor& data, int dim, size_t numel, int data_size) {
  size_t dim_el = data.stride(dim) * data.size(dim);
  int dtype_size = data_size / numel;
  size_t dim_size = dim_el * dtype_size;
  int dim_count = data_size / dim_size;
  auto data_ptr = (char*)(data.data_ptr());
  auto result_ptr = (char*)(result.data_ptr());
  for (int i = 0; i < dim_count; i++) {
654
    for (size_t offset = 0; offset < dim_size; offset += MAX_BUF_SIZE) {
655
656
657
658
659
660
661
662
663
664
665
666
      size_t chunk_size = dim_size - offset > MAX_BUF_SIZE ? MAX_BUF_SIZE : dim_size - offset;
      size_t chunk_el = chunk_size / dtype_size;
      naive_all_gather(
          result_ptr + i * dim_size * world_size + offset,
          data_ptr + i * dim_size + offset,
          dim_size,
          chunk_size,
          chunk_el);
    }
  }
  return result;
}