pd_disaggregation.md 3.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# PD Disaggregation

## Why and What is PD Disaggregation?

Large Language Model (LLM) inference comprises two distinct phases: **Prefill** and **Decode**. The Prefill phase is computation-intensive, processing the entire input sequence, while the Decode phase is memory-intensive, managing the Key-Value (KV) cache for token generation. Traditionally, these phases are handled within a unified engine, where combined scheduling of prefill and decode batches introduces inefficiencies. To address these challenges, we introduce **Prefill and Decoding (PD) Disaggregation** in SGLang.

### Issues with Unified Scheduling

The conventional unified engine, which processes prefill and decode batches together, results in two significant problems:

1. **Prefill Interruption**: Incoming prefill batches frequently interrupt ongoing decode batches, causing substantial delays in token generation.
2. **DP Attention Imbalance**: In data-parallel (DP) attention, one DP worker may process a prefill batch while another handles a decode batch simultaneously, leading to increased decode latency.

PD Disaggregation resolves these by separating the two stages, enabling tailored optimizations for each.

For the design details, please refer to [link](https://docs.google.com/document/d/1rQXJwKd5b9b1aOzLh98mnyMhBMhlxXA5ATZTHoQrwvc/edit?tab=t.0).

Currently, we support Mooncake and NIXL as the transfer engine.


## Mooncake
### Requirements

```bash
uv pip install mooncake-transfer-engine
```

### Usage

### Llama Single Node

```bash
$ python -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --disaggregation-mode prefill --disaggregation-ib-device mlx5_roce0
$ python -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --disaggregation-mode decode --port 30001 --base-gpu-id 1 --disaggregation-ib-device mlx5_roce0
$ python -m sglang.srt.disaggregation.mini_lb --prefill http://127.0.0.1:30000 --decode http://127.0.0.1:30001 --host 0.0.0.0 --port 8000
```

### DeepSeek Multi-Node

```bash
# prefill 0
$ python -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3-0324 --disaggregation-ib-device ${device_name} --disaggregation-mode prefill --host ${local_ip} --port 30000 --trust-remote-code --dist-init-addr ${prefill_master_ip}:5000 --nnodes 2 --node-rank 0 --tp-size 16 --dp-size 8 --enable-dp-attention --enable-deepep-moe --deepep-mode normal --mem-fraction-static 0.8
# prefill 1
$ python -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3-0324 --disaggregation-ib-device ${device_name} --disaggregation-mode prefill --host ${local_ip} --port 30000 --trust-remote-code --dist-init-addr ${prefill_master_ip}:5000 --nnodes 2 --node-rank 1 --tp-size 16 --dp-size 8 --enable-dp-attention --enable-deepep-moe --deepep-mode normal --mem-fraction-static 0.8
# decode 0
$ python -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3-0324 --disaggregation-ib-device ${device_name} --disaggregation-mode decode --host ${local_ip} --port 30001 --trust-remote-code --dist-init-addr ${decode_master_ip}:5000 --nnodes 2 --node-rank 0 --tp-size 16 --dp-size 8 --enable-dp-attention --enable-deepep-moe --deepep-mode low_latency --mem-fraction-static 0.8 --max-running-requests 128
# decode 1
$ python -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3-0324 --disaggregation-ib-device ${device_name} --disaggregation-mode decode --host ${local_ip} --port 30001 --trust-remote-code --dist-init-addr ${decode_master_ip}:5000 --nnodes 2 --node-rank 1 --tp-size 16 --dp-size 8 --enable-dp-attention --enable-deepep-moe --deepep-mode low_latency --mem-fraction-static 0.8 --max-running-requests 128
```