test_openai_server.py 15 KB
Newer Older
1
import json
2
import time
3
import unittest
4
5

import openai
6

yichuan~'s avatar
yichuan~ committed
7
from sglang.srt.hf_transformers_utils import get_tokenizer
8
from sglang.srt.utils import kill_child_process
9
10
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_TEST,
Yineng Zhang's avatar
Yineng Zhang committed
11
    DEFAULT_URL_FOR_UNIT_TEST,
12
13
    popen_launch_server,
)
14
15
16
17
18


class TestOpenAIServer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
Ying Sheng's avatar
Ying Sheng committed
19
        cls.model = DEFAULT_MODEL_NAME_FOR_TEST
Yineng Zhang's avatar
Yineng Zhang committed
20
        cls.base_url = DEFAULT_URL_FOR_UNIT_TEST
21
22
23
24
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model, cls.base_url, timeout=300, api_key=cls.api_key
        )
25
        cls.base_url += "/v1"
Ying Sheng's avatar
Ying Sheng committed
26
        cls.tokenizer = get_tokenizer(DEFAULT_MODEL_NAME_FOR_TEST)
27
28
29
30
31

    @classmethod
    def tearDownClass(cls):
        kill_child_process(cls.process.pid)

yichuan~'s avatar
yichuan~ committed
32
33
34
    def run_completion(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
35
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
36
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
37
38
39
40
41
42
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
43
44

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
45
            prompt_arg = [prompt_input, prompt_input]
46
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
47
            num_prompt_tokens *= 2
48
        else:
yichuan~'s avatar
yichuan~ committed
49
            prompt_arg = prompt_input
50
51
            num_choices = 1

52
53
        response = client.completions.create(
            model=self.model,
54
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
55
            temperature=0,
56
57
58
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
59
            n=parallel_sample_num,
60
        )
61

yichuan~'s avatar
yichuan~ committed
62
        assert len(response.choices) == num_choices * parallel_sample_num
63

Cody Yu's avatar
Cody Yu committed
64
        if echo:
65
            text = response.choices[0].text
66
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
67

Cody Yu's avatar
Cody Yu committed
68
        if logprobs:
69
70
71
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
72
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
yichuan~'s avatar
yichuan~ committed
73
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some out_put id maps to the same output token and duplicate in the map
74
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
75
            assert ret_num_top_logprobs > 0
76
77
78
79
            if echo:
                assert response.choices[0].logprobs.token_logprobs[0] == None
            else:
                assert response.choices[0].logprobs.token_logprobs[0] != None
yichuan~'s avatar
yichuan~ committed
80

81
82
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
83
84
85
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
86
87
88
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

yichuan~'s avatar
yichuan~ committed
89
    def run_completion_stream(self, echo, logprobs, token_input):
90
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
91
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
92
93
94
95
        if token_input:
            prompt_arg = self.tokenizer.encode(prompt)
        else:
            prompt_arg = prompt
96
97
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
98
99
            prompt=prompt_arg,
            temperature=0,
100
101
102
103
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
104
            stream_options={"include_usage": True},
105
106
107
108
        )

        first = True
        for response in generator:
109
110
111
112
113
114
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue
115
116
117
118
            if logprobs:
                assert response.choices[0].logprobs
                assert isinstance(response.choices[0].logprobs.tokens[0], str)
                if not (first and echo):
119
120
121
122
123
124
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
                    )
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
yichuan~'s avatar
yichuan~ committed
125
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some out_put id maps to the same output token and duplicate in the map
126
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
127
                    assert ret_num_top_logprobs > 0
128
129
130

            if first:
                if echo:
yichuan~'s avatar
yichuan~ committed
131
132
133
                    assert response.choices[0].text.startswith(
                        prompt
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {first}"
134
135
136
137
                first = False
            assert response.id
            assert response.created

yichuan~'s avatar
yichuan~ committed
138
    def run_chat_completion(self, logprobs, parallel_sample_num):
139
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
140
141
142
143
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
144
145
146
147
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
148
149
150
151
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
152
            n=parallel_sample_num,
153
        )
Ying Sheng's avatar
Ying Sheng committed
154

155
156
157
158
159
160
161
162
163
164
165
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
166

yichuan~'s avatar
yichuan~ committed
167
        assert len(response.choices) == parallel_sample_num
168
169
170
171
172
173
174
175
176
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def run_chat_completion_stream(self, logprobs):
177
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
178
179
180
181
182
183
184
185
186
187
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
188
            stream_options={"include_usage": True},
189
190
191
192
        )

        is_first = True
        for response in generator:
193
194
195
196
197
198
199
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue

200
            data = response.choices[0].delta
201

202
203
204
205
206
207
            if is_first:
                data.role == "assistant"
                is_first = False
                continue

            if logprobs:
yichuan~'s avatar
yichuan~ committed
208
209
210
211
212
213
214
215
216
217
218
219
220
                assert response.choices[0].logprobs
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
                )
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
                )
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
221
222
223
224
225

            assert isinstance(data.content, str)
            assert response.id
            assert response.created

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    def run_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        if mode == "completion":
            input_file_path = "complete_input.jsonl"
            # write content to input file
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 3 names of famous soccer player: ",
                        "max_tokens": 20,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous basketball player:  ",
                        "max_tokens": 40,
                    },
                },
                {
                    "custom_id": "request-3",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous tenniss player:  ",
                        "max_tokens": 40,
                    },
                },
            ]

        else:
            input_file_path = "chat_input.jsonl"
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {
                                "role": "system",
                                "content": "You are a helpful assistant.",
                            },
                            {
                                "role": "user",
                                "content": "Hello! List 3 NBA players and tell a story",
                            },
                        ],
                        "max_tokens": 30,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {"role": "system", "content": "You are an assistant. "},
                            {
                                "role": "user",
                                "content": "Hello! List three capital and tell a story",
                            },
                        ],
                        "max_tokens": 50,
                    },
                },
            ]
        with open(input_file_path, "w") as file:
            for line in content:
                file.write(json.dumps(line) + "\n")
        with open(input_file_path, "rb") as file:
            uploaded_file = client.files.create(file=file, purpose="batch")
        if mode == "completion":
            endpoint = "/v1/completions"
        elif mode == "chat":
            endpoint = "/v1/chat/completions"
        completion_window = "24h"
        batch_job = client.batches.create(
            input_file_id=uploaded_file.id,
            endpoint=endpoint,
            completion_window=completion_window,
        )
        while batch_job.status not in ["completed", "failed", "cancelled"]:
            time.sleep(3)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            batch_job = client.batches.retrieve(batch_job.id)
        assert batch_job.status == "completed"
        assert batch_job.request_counts.completed == len(content)
        assert batch_job.request_counts.failed == 0
        assert batch_job.request_counts.total == len(content)

        result_file_id = batch_job.output_file_id
        file_response = client.files.content(result_file_id)
yichuan~'s avatar
yichuan~ committed
331
332
333
334
335
336
        result_content = file_response.read().decode("utf-8")  # Decode bytes to string
        results = [
            json.loads(line)
            for line in result_content.split("\n")
            if line.strip() != ""
        ]
337
338
        assert len(results) == len(content)

339
340
341
    def test_completion(self):
        for echo in [False, True]:
            for logprobs in [None, 5]:
342
                for use_list_input in [True, False]:
yichuan~'s avatar
yichuan~ committed
343
344
345
346
347
348
349
350
351
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
352
353

    def test_completion_stream(self):
yichuan~'s avatar
yichuan~ committed
354
        # parallel sampling adn list input are not supported in streaming mode
355
356
        for echo in [False, True]:
            for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
357
358
                for token_input in [False, True]:
                    self.run_completion_stream(echo, logprobs, token_input)
359

360
361
    def test_chat_completion(self):
        for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
362
363
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
364
365
366
367
368

    def test_chat_completion_stream(self):
        for logprobs in [None, 5]:
            self.run_chat_completion_stream(logprobs)

369
370
371
372
    def test_batch(self):
        for mode in ["completion", "chat"]:
            self.run_batch(mode)

373
    def test_regex(self):
374
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

403

404
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
405
    unittest.main()