bench_offline_throughput.py 9.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
Benchmark the throughput of using the offline LLM engine.
This script does not launch a server.
It accepts the same arguments as launch_server.py and additional benchmark arguments

# Usage
## Sharegpt dataset with default args
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct

## Random dataset with default args
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct --dataset-name random

## Shared prefix dataset with default args
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct --dataset-name generated-shared-prefix

## Sharegpt dataset on runtime backend
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3-8B-Instruct --backend runtime
"""

import argparse
import dataclasses
import json
import logging
import random
import time
from typing import List, Tuple

import numpy as np

from sglang.api import Engine
from sglang.bench_serving import (
    get_dataset,
    get_tokenizer,
    sample_random_requests,
    set_ulimit,
)
from sglang.srt.server import Runtime
from sglang.srt.server_args import ServerArgs


@dataclasses.dataclass
class BenchArgs:
    backend: str = "engine"
    result_filename: str = ""
    dataset_name: str = "sharegpt"
    dataset_path: str = ""
    num_prompts: int = 1000
    sharegpt_output_len: int = 256
    random_input_len: int = 256
    random_output_len: int = 256
    random_range_ratio: float = 0.0
    gen_num_groups: int = 8
    gen_prompts_per_group: int = 16
    gen_system_prompt_len: int = 128
    gen_question_len: int = 256
    disable_ignore_eos: bool = False
    seed: int = 1

    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
        parser.add_argument("--backend", type=str, default=BenchArgs.backend)
        parser.add_argument(
            "--result-filename", type=str, default=BenchArgs.result_filename
        )
        parser.add_argument(
            "--dataset-name",
            type=str,
            default="sharegpt",
            choices=["sharegpt", "random", "generated-shared-prefix"],
            help="Name of the dataset to benchmark on.",
        )
        parser.add_argument(
            "--dataset-path", type=str, default="", help="Path to the dataset."
        )
        parser.add_argument(
            "--num-prompts",
            type=int,
            default=BenchArgs.num_prompts,
            help="Number of prompts to process. Default is 1000.",
        )
        parser.add_argument(
            "--sharegpt-output-len",
            type=int,
            default=BenchArgs.sharegpt_output_len,
            help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
        )
        parser.add_argument(
            "--random-input-len",
            type=int,
            default=BenchArgs.random_input_len,
            help="Number of input tokens per request, used only for random dataset.",
        )
        parser.add_argument(
            "--random-output-len",
            type=int,
            default=BenchArgs.random_output_len,
            help="Number of output tokens per request, used only for random dataset.",
        )
        parser.add_argument(
            "--random-range-ratio",
            type=float,
            default=BenchArgs.random_range_ratio,
            help="Range of sampled ratio of input/output length, "
            "used only for random dataset.",
        )
        parser.add_argument(
            "--gen-num-groups",
            type=int,
            default=BenchArgs.gen_num_groups,
            help="Number of groups with shared prefix, used"
            "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--gen-prompts-per-group",
            type=int,
            default=BenchArgs.gen_prompts_per_group,
            help="Number of prompts per group of shared prefix, used"
            "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--gen-system-prompt-len",
            type=int,
            default=BenchArgs.gen_system_prompt_len,
            help="System prompt length, used" "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--gen-question-len",
            type=int,
            default=BenchArgs.gen_question_len,
            help="Question length, used" "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--disable-ignore-eos",
            type=bool,
            default=BenchArgs.disable_ignore_eos,
            help="Disable ignore EOS token",
        )
        parser.add_argument("--seed", type=int, default=1, help="The random seed.")

    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
        # use the default value's type to case the args into correct types.
        attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)]
        print(attrs)
        return cls(
            **{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs}
        )


def throughput_test_once(
    backend_name: str,
    backend,
    reqs: List[Tuple[str, int, int]],
    ignore_eos: bool,
):
    measurement_results = {
        "backend": backend_name,
        "successful_requests": len(reqs),
        "total_latency": -1,
        "total_input_tokens": sum(r[1] for r in reqs),
        "total_output_tokens": -1,
        "request_throughput": -1,
        "input_throughput": -1,
        "output_throughput": -1,
        "total_throughput": -1,
    }

    prompt = [r[0] for r in reqs]
    sampling_params = [
        {
            "temperature": 0,
            "max_new_tokens": r[2],
            "ignore_eos": ignore_eos,
        }
        for r in reqs
    ]

    st = time.perf_counter()
    gen_out = backend.generate(prompt=prompt, sampling_params=sampling_params)
    latency = time.perf_counter() - st

    if backend_name == "runtime":
        gen_out = json.loads(gen_out)

    measurement_results["total_latency"] = latency
    measurement_results["total_output_tokens"] = sum(
        o["meta_info"]["completion_tokens"] for o in gen_out
    )
    measurement_results["request_throughput"] = (
        measurement_results["successful_requests"] / latency
    )
    measurement_results["input_throughput"] = (
        measurement_results["total_input_tokens"] / latency
    )
    measurement_results["output_throughput"] = (
        measurement_results["total_output_tokens"] / latency
    )
    measurement_results["total_throughput"] = (
        measurement_results["total_input_tokens"]
        + measurement_results["total_output_tokens"]
    ) / latency

    return measurement_results


def throughput_test(
    server_args: ServerArgs,
    bench_args: BenchArgs,
):
    if bench_args.backend == "engine":
        backend = Engine(**dataclasses.asdict(server_args))
        if not backend:
            raise ValueError("Please provide valid engine arguments")
    elif bench_args.backend == "runtime":
        backend = Runtime(**dataclasses.asdict(server_args))
    else:
        raise ValueError('Please set backend to either "engine" or "runtime"')

    tokenizer_id = server_args.model_path
    tokenizer = get_tokenizer(tokenizer_id)

    # Set global environmnets
    set_ulimit()
    random.seed(bench_args.seed)
    np.random.seed(bench_args.seed)

    input_requests = get_dataset(bench_args, tokenizer)

    warmup_requests = sample_random_requests(
        input_len=20,
        output_len=4,
        num_prompts=2,
        range_ratio=0.8,
        tokenizer=tokenizer,
        dataset_path=bench_args.dataset_path,
    )

    # Warm up
    throughput_test_once(
        backend_name=bench_args.backend,
        backend=backend,
        reqs=warmup_requests,
        ignore_eos=not bench_args.disable_ignore_eos,
    )

    result = throughput_test_once(
        backend_name=bench_args.backend,
        backend=backend,
        reqs=input_requests,
        ignore_eos=not bench_args.disable_ignore_eos,
    )

    if bench_args.result_filename:
        with open(bench_args.result_filename, "a") as fout:
            fout.write(json.dumps(result) + "\n")

    print(
        "\n{s:{c}^{n}}".format(s=" Offline Throughput Benchmark Result ", n=50, c="=")
    )
    print("{:<40} {:<10}".format("Backend:", result["backend"]))
    print("{:<40} {:<10}".format("Successful requests:", result["successful_requests"]))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", result["total_latency"]))
    print("{:<40} {:<10}".format("Total input tokens:", result["total_input_tokens"]))
    print(
        "{:<40} {:<10}".format("Total generated tokens:", result["total_output_tokens"])
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", result["request_throughput"]
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", result["input_throughput"]
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", result["output_throughput"]
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", result["total_throughput"]
        )
    )
    print("=" * 50)

    return result


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
    BenchArgs.add_cli_args(parser)
    args = parser.parse_args()
    server_args = ServerArgs.from_cli_args(args)
    bench_args = BenchArgs.from_cli_args(args)

    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format="%(message)s",
    )

    throughput_test(server_args, bench_args)