"rust/vscode:/vscode.git/clone" did not exist on "a4cca7fc53da2b0c58495e208bb17e0199246e12"
llama.py 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Lianmin Zheng's avatar
Lianmin Zheng committed
15
# Adapted from
16
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1
Lianmin Zheng's avatar
Lianmin Zheng committed
17
"""Inference-only LLaMA model compatible with HuggingFace weights."""
18

19
import logging
20
from typing import Any, Dict, Iterable, Optional, Tuple
Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
24

import torch
from torch import nn
from transformers import LlamaConfig
25
from vllm.distributed import get_tensor_model_parallel_world_size
Lianmin Zheng's avatar
Lianmin Zheng committed
26
27
from vllm.model_executor.layers.rotary_embedding import get_rope

28
29
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
30
31
32
33
34
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
35
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
36
from sglang.srt.layers.pooler import Pooler, PoolingType
37
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
38
from sglang.srt.layers.radix_attention import RadixAttention
39
40
41
42
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
43
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
44
from sglang.srt.model_loader.weight_utils import default_weight_loader
45
from sglang.srt.utils import make_layers
46
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
47

48
49
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
53
54
55
56

class LlamaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
57
        quant_config: Optional[QuantizationConfig] = None,
Yineng Zhang's avatar
Yineng Zhang committed
58
        prefix: str = "",
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
61
62
63
64
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
65
            quant_config=quant_config,
Yineng Zhang's avatar
Yineng Zhang committed
66
            prefix=f"{prefix}.gate_up_proj",
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
69
70
71
72
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
Yineng Zhang's avatar
Yineng Zhang committed
73
            prefix=f"{prefix}.down_proj",
Lianmin Zheng's avatar
Lianmin Zheng committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class LlamaAttention(nn.Module):
    def __init__(
        self,
Ke Bao's avatar
Ke Bao committed
92
        config: LlamaConfig,
Lianmin Zheng's avatar
Lianmin Zheng committed
93
94
95
96
97
98
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
99
        rope_is_neox_style: bool = True,
Lianmin Zheng's avatar
Lianmin Zheng committed
100
        max_position_embeddings: int = 8192,
101
        quant_config: Optional[QuantizationConfig] = None,
Yineng Zhang's avatar
Yineng Zhang committed
102
        prefix: str = "",
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
Ke Bao's avatar
Ke Bao committed
120
121
122
123
        # MistralConfig has an optional head_dim introduced by Mistral-Nemo
        self.head_dim = getattr(
            config, "head_dim", self.hidden_size // self.total_num_heads
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
124
125
126
127
128
129
130
131
132
133
134
135
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
136
            quant_config=quant_config,
Yineng Zhang's avatar
Yineng Zhang committed
137
            prefix=f"{prefix}.qkv_proj",
Lianmin Zheng's avatar
Lianmin Zheng committed
138
139
140
141
142
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
143
            quant_config=quant_config,
Yineng Zhang's avatar
Yineng Zhang committed
144
            prefix=f"{prefix}.o_proj",
Lianmin Zheng's avatar
Lianmin Zheng committed
145
146
147
148
149
150
151
152
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
153
            is_neox_style=rope_is_neox_style,
Lianmin Zheng's avatar
Lianmin Zheng committed
154
155
156
157
158
159
160
161
162
163
164
165
166
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
167
        forward_batch: ForwardBatch,
Lianmin Zheng's avatar
Lianmin Zheng committed
168
169
170
171
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
172
        attn_output = self.attn(q, k, v, forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
173
174
175
176
177
178
179
180
181
        output, _ = self.o_proj(attn_output)
        return output


class LlamaDecoderLayer(nn.Module):
    def __init__(
        self,
        config: LlamaConfig,
        layer_id: int = 0,
182
        quant_config: Optional[QuantizationConfig] = None,
Yineng Zhang's avatar
Yineng Zhang committed
183
        prefix: str = "",
Lianmin Zheng's avatar
Lianmin Zheng committed
184
185
186
187
188
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
189
        if rope_scaling is not None and getattr(
190
191
            config, "original_max_position_embeddings", None
        ):
zhyncs's avatar
zhyncs committed
192
193
194
            rope_scaling["original_max_position_embeddings"] = (
                config.original_max_position_embeddings
            )
195
        rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
        self.self_attn = LlamaAttention(
Ke Bao's avatar
Ke Bao committed
198
            config=config,
Lianmin Zheng's avatar
Lianmin Zheng committed
199
200
201
202
203
204
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
205
            rope_is_neox_style=rope_is_neox_style,
Lianmin Zheng's avatar
Lianmin Zheng committed
206
            max_position_embeddings=max_position_embeddings,
207
            quant_config=quant_config,
Yineng Zhang's avatar
Yineng Zhang committed
208
            prefix=f"{prefix}.self_attn",
Lianmin Zheng's avatar
Lianmin Zheng committed
209
210
211
212
213
        )
        self.mlp = LlamaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
214
            quant_config=quant_config,
Yineng Zhang's avatar
Yineng Zhang committed
215
            prefix=f"{prefix}.mlp",
Lianmin Zheng's avatar
Lianmin Zheng committed
216
217
218
219
220
221
222
223
224
225
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
226
        forward_batch: ForwardBatch,
Lianmin Zheng's avatar
Lianmin Zheng committed
227
228
229
230
231
232
233
234
235
236
237
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
238
            forward_batch=forward_batch,
Lianmin Zheng's avatar
Lianmin Zheng committed
239
240
241
242
243
244
245
246
247
248
249
250
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class LlamaModel(nn.Module):
    def __init__(
        self,
        config: LlamaConfig,
251
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
252
253
254
255
256
257
258
259
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
260
            quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
261
        )
262
263
264
265
266
267
        self.layers = make_layers(
            config.num_hidden_layers,
            lambda idx, prefix: LlamaDecoderLayer(
                config=config, quant_config=quant_config, layer_id=idx, prefix=prefix
            ),
            prefix="model.layers",
Lianmin Zheng's avatar
Lianmin Zheng committed
268
        )
269

Lianmin Zheng's avatar
Lianmin Zheng committed
270
271
272
273
274
275
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
276
        forward_batch: ForwardBatch,
277
        input_embeds: torch.Tensor = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
278
    ) -> torch.Tensor:
279
        if input_embeds is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
280
281
            hidden_states = self.embed_tokens(input_ids)
        else:
282
            hidden_states = input_embeds
Lianmin Zheng's avatar
Lianmin Zheng committed
283
284
285
286
287
288
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
289
                forward_batch,
Lianmin Zheng's avatar
Lianmin Zheng committed
290
291
292
293
294
295
296
297
298
299
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class LlamaForCausalLM(nn.Module):
    def __init__(
        self,
        config: LlamaConfig,
300
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
301
302
303
    ) -> None:
        super().__init__()
        self.config = config
304
305
        self.quant_config = quant_config
        self.model = LlamaModel(config, quant_config=quant_config)
306
307
        # Llama 3.2 1B Insturct set tie_word_embeddings to True
        # Llama 3.1 8B Insturct set tie_word_embeddings to False
308
309
310
311
312
313
        if self.config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            self.lm_head = ParallelLMHead(
                config.vocab_size, config.hidden_size, quant_config=quant_config
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
314
        self.logits_processor = LogitsProcessor(config)
315
        self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
316
317
318
319
320
321
322
323
        self.stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            (".qkv_proj", ".q_proj", "q"),
            (".qkv_proj", ".k_proj", "k"),
            (".qkv_proj", ".v_proj", "v"),
            (".gate_up_proj", ".gate_proj", 0),
            (".gate_up_proj", ".up_proj", 1),
        ]
Lianmin Zheng's avatar
Lianmin Zheng committed
324

Liangsheng Yin's avatar
Liangsheng Yin committed
325
    @torch.no_grad()
Lianmin Zheng's avatar
Lianmin Zheng committed
326
327
328
329
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
330
        forward_batch: ForwardBatch,
331
        input_embeds: torch.Tensor = None,
332
        get_embedding: bool = False,
Liangsheng Yin's avatar
Liangsheng Yin committed
333
    ) -> LogitsProcessorOutput:
334
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
335
336
        if not get_embedding:
            return self.logits_processor(
337
                input_ids, hidden_states, self.lm_head, forward_batch
338
339
340
            )
        else:
            return self.pooler(hidden_states, forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
341

342
    def get_hidden_dim(self, module_name):
343
        # return input_dim, output_dim
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        if module_name in ["q_proj", "o_proj", "qkv_proj"]:
            return self.config.hidden_size, self.config.hidden_size
        elif module_name in ["kv_proj"]:
            return self.config.hidden_size, self.config.hidden_size // (
                self.config.num_attention_heads // self.config.num_key_value_heads
            )
        elif module_name == "gate_up_proj":
            return self.config.hidden_size, self.config.intermediate_size
        elif module_name == "down_proj":
            return self.config.intermediate_size, self.config.hidden_size
        else:
            raise NotImplementedError()

    def get_module_name(self, name):
        params_mapping = {
            "q_proj": "qkv_proj",
            "k_proj": "qkv_proj",
            "v_proj": "qkv_proj",
            "gate_proj": "gate_up_proj",
            "up_proj": "gate_up_proj",
        }
        return params_mapping.get(name, name)

    def get_module_name_from_weight_name(self, name):
368
        for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping:
369
370
371
372
373
374
375
376
377
378
379
            if weight_name in name:
                return (
                    name.replace(weight_name, param_name)[: -len(".weight")],
                    num_shard,
                )
        return name[: -len(".weight")], 1

    def get_num_params(self):
        params_dict = dict(self.named_parameters())
        return len(params_dict)

380
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
383
384
385
386
387
            (".qkv_proj", ".q_proj", "q"),
            (".qkv_proj", ".k_proj", "k"),
            (".qkv_proj", ".v_proj", "v"),
            (".gate_up_proj", ".gate_proj", 0),
            (".gate_up_proj", ".up_proj", 1),
Lianmin Zheng's avatar
Lianmin Zheng committed
388
        ]
389

390
        params_dict = dict(self.named_parameters())
391

392
        for name, loaded_weight in weights:
Lianmin Zheng's avatar
Lianmin Zheng committed
393
            if "rotary_emb.inv_freq" in name or "projector" in name:
394
                continue
Lianmin Zheng's avatar
Lianmin Zheng committed
395
396
397
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
398
                continue
399
            if name.startswith("model.vision_tower") and name not in params_dict:
400
                continue
401

Lianmin Zheng's avatar
Lianmin Zheng committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
416
                    continue
417
418
419
                # Skip loading kv_scale from ckpts towards new design.
                if name.endswith(".kv_scale") and name not in params_dict:
                    continue
Lianmin Zheng's avatar
Lianmin Zheng committed
420
421
422
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
Cody Yu's avatar
Cody Yu committed
423

424
425
426
427
428
429
430
431
432
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100, tp_size: int = 1
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        try:
433
434
435
436
437
438
439
440
441
442
443
            if name == "lm_head.weight" and self.config.tie_word_embeddings:
                logger.info(
                    "word embedding is tied for this model, return embed_tokens.weight as lm_head.weight."
                )
                return (
                    self.model.embed_tokens.weight.cpu()
                    .to(torch.float32)
                    .numpy()
                    .tolist()[:truncate_size]
                )

444
445
446
447
448
449
450
451
            mapped_name = name
            mapped_shard_id = None
            for param_name, weight_name, shard_id in self.stacked_params_mapping:
                if weight_name in name:
                    mapped_name = name.replace(weight_name, param_name)
                    mapped_shard_id = shard_id
                    break
            params_dict = dict(self.named_parameters())
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
            param = params_dict[mapped_name]
            if mapped_shard_id is not None:
                if mapped_shard_id in ["q", "k", "v"]:
                    num_heads = self.config.num_attention_heads // tp_size
                    num_kv_heads = self.config.num_key_value_heads // tp_size
                    head_dim = (
                        self.config.hidden_size // self.config.num_attention_heads
                    )
                    if mapped_shard_id == "q":
                        offset = 0
                        size = num_heads * head_dim
                    elif mapped_shard_id == "k":
                        offset = num_heads * head_dim
                        size = num_kv_heads * head_dim
                    elif mapped_shard_id == "v":
                        offset = (num_heads + num_kv_heads) * head_dim
                        size = num_kv_heads * head_dim
                    weight = param.data.narrow(0, offset, size)
                elif mapped_shard_id in [0, 1]:
                    intermediate_size = self.config.intermediate_size
                    slice_size = intermediate_size // tp_size
                    if mapped_shard_id == 0:  # gate_proj
                        offset = 0
                        size = slice_size
                    elif mapped_shard_id == 1:  # up_proj
                        offset = slice_size
                        size = slice_size

                    weight = param.data.narrow(0, offset, size)
481
482
483
                else:
                    weight = param.data
            else:
484
485
486
487
488
489
490
491
                weight = param.data
            if tp_size > 1 and ("o_proj" in name or "down_proj" in name):
                gathered_weights = [torch.zeros_like(weight) for _ in range(tp_size)]
                torch.distributed.all_gather(gathered_weights, weight)
                weight = torch.cat(gathered_weights, dim=1)
            return weight.cpu().to(torch.float32).numpy().tolist()[:truncate_size]

        except Exception:
492
            logger.error(
493
                f"Error getting weights by name {name} in LlamaForCausalLM: {get_exception_traceback()}"
494
495
496
            )
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
497

498
499
500
501
502
class Phi3ForCausalLM(LlamaForCausalLM):
    pass


EntryClass = [LlamaForCausalLM, Phi3ForCausalLM]