http_server.py 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

This file implements HTTP APIs for the inferenc engine via fastapi.
"""

import asyncio
import dataclasses
import logging
import multiprocessing as multiprocessing
import os
import threading
import time
from http import HTTPStatus
from typing import AsyncIterator, Dict, Optional

# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

import orjson
import requests
import uvicorn
import uvloop
from fastapi import FastAPI, File, Form, Request, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import ORJSONResponse, Response, StreamingResponse

from sglang.srt.entrypoints.engine import _launch_subprocesses
YAMY's avatar
YAMY committed
42
from sglang.srt.function_call_parser import FunctionCallParser
43
44
45
46
from sglang.srt.managers.io_struct import (
    CloseSessionReqInput,
    ConfigureLoggingReq,
    EmbeddingReqInput,
YAMY's avatar
YAMY committed
47
    FunctionCallReqInput,
48
49
50
51
52
53
54
55
56
    GenerateReqInput,
    GetWeightsByNameReqInput,
    InitWeightsUpdateGroupReqInput,
    OpenSessionReqInput,
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
    UpdateWeightFromDiskReqInput,
    UpdateWeightsFromDistributedReqInput,
)
57
from sglang.srt.managers.tokenizer_manager import TokenizerManager
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from sglang.srt.metrics.func_timer import enable_func_timer
from sglang.srt.openai_api.adapter import (
    v1_batches,
    v1_cancel_batch,
    v1_chat_completions,
    v1_completions,
    v1_delete_file,
    v1_embeddings,
    v1_files_create,
    v1_retrieve_batch,
    v1_retrieve_file,
    v1_retrieve_file_content,
)
from sglang.srt.openai_api.protocol import ModelCard, ModelList
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import (
    add_api_key_middleware,
    add_prometheus_middleware,
    delete_directory,
    kill_process_tree,
    set_uvicorn_logging_configs,
)
from sglang.utils import get_exception_traceback
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

# Fast API
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


# Store global states
@dataclasses.dataclass
class _GlobalState:
100
    tokenizer_manager: TokenizerManager
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    scheduler_info: Dict


_global_state: Optional[_GlobalState] = None


def set_global_state(global_state: _GlobalState):
    global _global_state
    _global_state = global_state


##### Native API endpoints #####


@app.get("/health")
async def health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.get("/health_generate")
async def health_generate(request: Request) -> Response:
    """Check the health of the inference server by generating one token."""

    sampling_params = {"max_new_tokens": 1, "temperature": 0.7}

127
    if _global_state.tokenizer_manager.is_generation:
128
129
130
131
132
133
134
135
136
        gri = GenerateReqInput(
            input_ids=[0], sampling_params=sampling_params, log_metrics=False
        )
    else:
        gri = EmbeddingReqInput(
            input_ids=[0], sampling_params=sampling_params, log_metrics=False
        )

    try:
137
        async for _ in _global_state.tokenizer_manager.generate_request(gri, request):
138
139
140
141
142
143
144
145
146
147
148
            break
        return Response(status_code=200)
    except Exception as e:
        logger.exception(e)
        return Response(status_code=503)


@app.get("/get_model_info")
async def get_model_info():
    """Get the model information."""
    result = {
149
150
151
        "model_path": _global_state.tokenizer_manager.model_path,
        "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path,
        "is_generation": _global_state.tokenizer_manager.is_generation,
152
153
154
155
156
157
158
    }
    return result


@app.get("/get_server_info")
async def get_server_info():
    return {
159
        **dataclasses.asdict(_global_state.tokenizer_manager.server_args),
160
161
162
163
164
165
166
167
168
169
170
171
172
        **_global_state.scheduler_info,
        "version": __version__,
    }


# fastapi implicitly converts json in the request to obj (dataclass)
@app.api_route("/generate", methods=["POST", "PUT"])
async def generate_request(obj: GenerateReqInput, request: Request):
    """Handle a generate request."""
    if obj.stream:

        async def stream_results() -> AsyncIterator[bytes]:
            try:
173
                async for out in _global_state.tokenizer_manager.generate_request(
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                    obj, request
                ):
                    yield b"data: " + orjson.dumps(
                        out, option=orjson.OPT_NON_STR_KEYS
                    ) + b"\n\n"
            except ValueError as e:
                out = {"error": {"message": str(e)}}
                yield b"data: " + orjson.dumps(
                    out, option=orjson.OPT_NON_STR_KEYS
                ) + b"\n\n"
            yield b"data: [DONE]\n\n"

        return StreamingResponse(
            stream_results(),
            media_type="text/event-stream",
189
            background=_global_state.tokenizer_manager.create_abort_task(obj),
190
191
192
        )
    else:
        try:
193
            ret = await _global_state.tokenizer_manager.generate_request(
194
195
196
197
198
199
200
201
202
203
204
205
                obj, request
            ).__anext__()
            return ret
        except ValueError as e:
            logger.error(f"Error: {e}")
            return _create_error_response(e)


@app.api_route("/encode", methods=["POST", "PUT"])
async def encode_request(obj: EmbeddingReqInput, request: Request):
    """Handle an embedding request."""
    try:
206
        ret = await _global_state.tokenizer_manager.generate_request(
207
208
209
210
211
212
213
214
215
216
217
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.api_route("/classify", methods=["POST", "PUT"])
async def classify_request(obj: EmbeddingReqInput, request: Request):
    """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
    try:
218
        ret = await _global_state.tokenizer_manager.generate_request(
219
220
221
222
223
224
225
226
227
228
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.post("/flush_cache")
async def flush_cache():
    """Flush the radix cache."""
229
    _global_state.tokenizer_manager.flush_cache()
230
231
232
233
234
235
236
237
238
239
    return Response(
        content="Cache flushed.\nPlease check backend logs for more details. "
        "(When there are running or waiting requests, the operation will not be performed.)\n",
        status_code=200,
    )


@app.api_route("/start_profile", methods=["GET", "POST"])
async def start_profile_async():
    """Start profiling."""
240
    _global_state.tokenizer_manager.start_profile()
241
242
243
244
245
246
247
248
249
    return Response(
        content="Start profiling.\n",
        status_code=200,
    )


@app.api_route("/stop_profile", methods=["GET", "POST"])
async def stop_profile_async():
    """Stop profiling."""
250
    _global_state.tokenizer_manager.stop_profile()
251
252
253
254
255
256
257
258
259
    return Response(
        content="Stop profiling. This will take some time.\n",
        status_code=200,
    )


@app.post("/update_weights_from_disk")
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
    """Update the weights from disk in-place without re-launching the server."""
260
    success, message = await _global_state.tokenizer_manager.update_weights_from_disk(
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.post("/init_weights_update_group")
async def init_weights_update_group(
    obj: InitWeightsUpdateGroupReqInput, request: Request
):
    """Initialize the parameter update group."""
281
    success, message = await _global_state.tokenizer_manager.init_weights_update_group(
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


@app.post("/update_weights_from_distributed")
async def update_weights_from_distributed(
    obj: UpdateWeightsFromDistributedReqInput, request: Request
):
    """Update model parameter from distributed online."""
296
297
298
299
    success, message = (
        await _global_state.tokenizer_manager.update_weights_from_distributed(
            obj, request
        )
300
301
302
303
304
305
306
307
308
309
310
311
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
    """Get model parameter by name."""
    try:
312
        ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request)
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        if ret is None:
            return _create_error_response("Get parameter by name failed")
        else:
            return ORJSONResponse(ret, status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
async def release_memory_occupation(
    obj: ReleaseMemoryOccupationReqInput, request: Request
):
    """Release GPU occupation temporarily"""
    try:
327
        await _global_state.tokenizer_manager.release_memory_occupation(obj, request)
328
329
330
331
332
333
334
335
336
337
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
async def resume_memory_occupation(
    obj: ResumeMemoryOccupationReqInput, request: Request
):
    """Resume GPU occupation"""
    try:
338
        await _global_state.tokenizer_manager.resume_memory_occupation(obj, request)
339
340
341
342
343
344
345
346
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/open_session", methods=["GET", "POST"])
async def open_session(obj: OpenSessionReqInput, request: Request):
    """Open a session, and return its unique session id."""
    try:
347
        session_id = await _global_state.tokenizer_manager.open_session(obj, request)
348
349
350
351
352
353
354
355
356
357
358
359
360
        if session_id is None:
            raise Exception(
                "Failed to open the session. Check if a session with the same id is still open."
            )
        return session_id
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/close_session", methods=["GET", "POST"])
async def close_session(obj: CloseSessionReqInput, request: Request):
    """Close the session"""
    try:
361
        await _global_state.tokenizer_manager.close_session(obj, request)
362
363
364
365
366
367
368
369
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/configure_logging", methods=["GET", "POST"])
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
    """Close the session"""
370
    _global_state.tokenizer_manager.configure_logging(obj)
371
372
373
    return Response(status_code=200)


YAMY's avatar
YAMY committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@app.post("/function_call")
async def function_call_request(obj: FunctionCallReqInput, request: Request):
    """
    A native API endpoint to parse function calls from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser)

    # 2) Call the non-stream parsing method (non-stream)
    normal_text, calls = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "normal_text": normal_text,
        "calls": [
            call.model_dump() for call in calls
        ],  # Convert pydantic objects to dictionaries
    }

    return ORJSONResponse(content=response_data, status_code=200)


396
397
398
399
400
##### OpenAI-compatible API endpoints #####


@app.post("/v1/completions")
async def openai_v1_completions(raw_request: Request):
401
    return await v1_completions(_global_state.tokenizer_manager, raw_request)
402
403
404
405


@app.post("/v1/chat/completions")
async def openai_v1_chat_completions(raw_request: Request):
406
    return await v1_chat_completions(_global_state.tokenizer_manager, raw_request)
407
408
409
410


@app.post("/v1/embeddings", response_class=ORJSONResponse)
async def openai_v1_embeddings(raw_request: Request):
411
    response = await v1_embeddings(_global_state.tokenizer_manager, raw_request)
412
413
414
415
416
417
    return response


@app.get("/v1/models", response_class=ORJSONResponse)
def available_models():
    """Show available models."""
418
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
419
420
421
422
423
424
425
426
427
    model_cards = []
    for served_model_name in served_model_names:
        model_cards.append(ModelCard(id=served_model_name, root=served_model_name))
    return ModelList(data=model_cards)


@app.post("/v1/files")
async def openai_v1_files(file: UploadFile = File(...), purpose: str = Form("batch")):
    return await v1_files_create(
428
        file, purpose, _global_state.tokenizer_manager.server_args.file_storage_pth
429
430
431
432
433
434
435
436
437
438
439
    )


@app.delete("/v1/files/{file_id}")
async def delete_file(file_id: str):
    # https://platform.openai.com/docs/api-reference/files/delete
    return await v1_delete_file(file_id)


@app.post("/v1/batches")
async def openai_v1_batches(raw_request: Request):
440
    return await v1_batches(_global_state.tokenizer_manager, raw_request)
441
442
443
444
445


@app.post("/v1/batches/{batch_id}/cancel")
async def cancel_batches(batch_id: str):
    # https://platform.openai.com/docs/api-reference/batch/cancel
446
    return await v1_cancel_batch(_global_state.tokenizer_manager, batch_id)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465


@app.get("/v1/batches/{batch_id}")
async def retrieve_batch(batch_id: str):
    return await v1_retrieve_batch(batch_id)


@app.get("/v1/files/{file_id}")
async def retrieve_file(file_id: str):
    # https://platform.openai.com/docs/api-reference/files/retrieve
    return await v1_retrieve_file(file_id)


@app.get("/v1/files/{file_id}/content")
async def retrieve_file_content(file_id: str):
    # https://platform.openai.com/docs/api-reference/files/retrieve-contents
    return await v1_retrieve_file_content(file_id)


466
467
468
469
470
471
472
473
474
475
476
477
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.post("/invocations")
async def sagemaker_chat_completions(raw_request: Request):
    return await v1_chat_completions(_global_state.tokenizer_manager, raw_request)


478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def _create_error_response(e):
    return ORJSONResponse(
        {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
    )


def launch_server(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None,
):
    """
    Launch SRT (SGLang Runtime) Server.

    The SRT server consists of an HTTP server and an SRT engine.

    - HTTP server: A FastAPI server that routes requests to the engine.
    - The engine consists of three components:
495
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
496
497
498
499
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
500
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
501
502
    2. Inter-process communication is done through ICP (each process uses a different port) via the ZMQ library.
    """
503
    tokenizer_manager, scheduler_info = _launch_subprocesses(server_args=server_args)
504
505
    set_global_state(
        _GlobalState(
506
            tokenizer_manager=tokenizer_manager,
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
            scheduler_info=scheduler_info,
        )
    )

    # Add api key authorization
    if server_args.api_key:
        add_api_key_middleware(app, server_args.api_key)

    # Add prometheus middleware
    if server_args.enable_metrics:
        add_prometheus_middleware(app)
        enable_func_timer()

    # Send a warmup request
    t = threading.Thread(
        target=_wait_and_warmup,
        args=(
            server_args,
            pipe_finish_writer,
526
            _global_state.tokenizer_manager.image_token_id,
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        ),
    )
    t.start()

    try:
        # Update logging configs
        set_uvicorn_logging_configs()

        # Listen for HTTP requests
        uvicorn.run(
            app,
            host=server_args.host,
            port=server_args.port,
            log_level=server_args.log_level_http or server_args.log_level,
            timeout_keep_alive=5,
            loop="uvloop",
        )
    finally:
        t.join()


def _wait_and_warmup(server_args, pipe_finish_writer, image_token_text):
    headers = {}
    url = server_args.url()
    if server_args.api_key:
        headers["Authorization"] = f"Bearer {server_args.api_key}"

    # Wait until the server is launched
    success = False
    for _ in range(120):
        time.sleep(1)
        try:
            res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
            assert res.status_code == 200, f"{res=}, {res.text=}"
            success = True
            break
        except (AssertionError, requests.exceptions.RequestException):
            last_traceback = get_exception_traceback()
            pass

    if not success:
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
        return

    model_info = res.json()

    # Send a warmup request
    request_name = "/generate" if model_info["is_generation"] else "/encode"
    max_new_tokens = 8 if model_info["is_generation"] else 1
    json_data = {
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": max_new_tokens,
        },
    }
    if server_args.skip_tokenizer_init:
        json_data["input_ids"] = [10, 11, 12]
    else:
        json_data["text"] = "The capital city of France is"

    try:
        for _ in range(server_args.dp_size):
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=600,
            )
            assert res.status_code == 200, f"{res}"
    except Exception:
        last_traceback = get_exception_traceback()
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
        return

    # Debug print
    # logger.info(f"{res.json()=}")

    logger.info("The server is fired up and ready to roll!")
    if pipe_finish_writer is not None:
        pipe_finish_writer.send("ready")

    if server_args.delete_ckpt_after_loading:
        delete_directory(server_args.model_path)