moe.py 5.12 KB
Newer Older
1
2
from typing import Optional

3
4
5
6
7
8
9
10
11
12
13
14
15
import torch


def moe_align_block_size(
    topk_ids,
    num_experts,
    block_size,
    sorted_token_ids,
    experts_ids,
    num_tokens_post_pad,
    token_cnts_buffer,
    cumsum_buffer,
):
16
    torch.ops.sgl_kernel.moe_align_block_size.default(
17
18
19
20
21
22
23
24
25
        topk_ids,
        num_experts,
        block_size,
        sorted_token_ids,
        experts_ids,
        num_tokens_post_pad,
        token_cnts_buffer,
        cumsum_buffer,
    )
26
27
28
29
30
31
32
33


def topk_softmax(
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    token_expert_indices: torch.Tensor,
    gating_output: float,
) -> None:
34
    torch.ops.sgl_kernel.topk_softmax.default(
35
36
        topk_weights, topk_ids, token_expert_indices, gating_output
    )
37
38


39
40
41
42
43
44
def moe_fused_gate(
    input_tensor,
    bias,
    num_expert_group,
    topk_group,
    topk,
45
    num_fused_shared_experts=0,
46
47
    routed_scaling_factor=0,
):
48
49
    # This fused kernel function is used to select topk expert in a hierarchical 2-layer fashion
    # it split group of expert into num_expert_group, and use top2 expert weight sum in each group
50
    # as the group weight to select expert groups and then select topk experts within the selected groups
51
    # the #experts is decided by the input tensor shape and we currently only support power of 2 #experts
52
53
    # and #experts should be divisible by num_expert_group. #expert/num_expert_group <= 32 is limited for now.
    # for non-supported case, we suggest to use the biased_grouped_topk func in sglang.srt.layers.moe.topk
54
    # num_fused_shared_experts: if > 0, the last expert will be replaced with a round-robin shared expert
55
    # routed_scaling_factor: if > 0, the last expert will be scaled by this factor
56
    return torch.ops.sgl_kernel.moe_fused_gate.default(
57
58
59
60
61
        input_tensor,
        bias,
        num_expert_group,
        topk_group,
        topk,
62
        num_fused_shared_experts,
63
        routed_scaling_factor,
64
    )
65
66


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def ep_moe_pre_reorder(
    input_tensor,
    gateup_input,
    src2dst,
    topk_ids,
    a1_scales,
    start_expert_id,
    end_expert_id,
    topk,
    use_per_token_if_dynamic,
):
    return torch.ops.sgl_kernel.ep_moe_pre_reorder.default(
        input_tensor,
        gateup_input,
        src2dst,
        topk_ids,
        a1_scales,
        start_expert_id,
        end_expert_id,
        topk,
        use_per_token_if_dynamic,
    )


91
92
def fp8_blockwise_scaled_grouped_mm(
    output,
93
94
95
96
97
    a_ptrs,
    b_ptrs,
    out_ptrs,
    a_scales_ptrs,
    b_scales_ptrs,
98
99
100
101
102
103
104
105
106
107
108
    a,
    b,
    scales_a,
    scales_b,
    stride_a,
    stride_b,
    stride_c,
    layout_sfa,
    layout_sfb,
    problem_sizes,
    expert_offsets,
109
    workspace,
110
111
112
):
    torch.ops.sgl_kernel.fp8_blockwise_scaled_grouped_mm.default(
        output,
113
114
115
116
117
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
118
119
120
121
122
123
124
125
126
127
128
        a,
        b,
        scales_a,
        scales_b,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        expert_offsets,
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        workspace,
    )


def prepare_moe_input(
    topk_ids,
    expert_offsets,
    problem_sizes1,
    problem_sizes2,
    input_permutation,
    output_permutation,
    num_experts,
    n,
    k,
143
    blockscale_offsets: Optional[torch.Tensor] = None,
144
145
146
147
):
    torch.ops.sgl_kernel.prepare_moe_input.default(
        topk_ids,
        expert_offsets,
148
        blockscale_offsets,
149
150
151
152
153
154
155
        problem_sizes1,
        problem_sizes2,
        input_permutation,
        output_permutation,
        num_experts,
        n,
        k,
156
    )
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207


def cutlass_fp4_group_mm(
    a_fp4,
    b_fp4,
    a_blockscale,
    b_blockscale,
    alphas,
    ab_strides,
    c_strides,
    problem_sizes,
    expert_offsets,
    blockscale_offsets,
    out_dtype,
    device,
):
    """
    An FP4 Blockscaled Group Gemm that takes in  a_tensors, b_tensors and runs
    the gemms for each combination based on the specified problem sizes.

    This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
    - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
                     input and expert weights.
    - a_/b_scales: The blockscales in FP8-E4M3 precision
    - ab_strides/c_strides: Strides for the a/b tensors between rows.
    - expert_offsets/sf_offsets: Indices that mark at which token index
                    each expert begins its computation. The number of tokens
                    computed with expert E is expert_offsets[E + 1] -
                    expert_offsets[E] And the sf_size per expert is
                    sf_offset[E+1] - sf_offset[E]
    - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
                     MMs used in the fused MoE operation.
    """
    m_topk = a_fp4.shape[0]
    n = b_fp4.shape[1]
    c_shape = (m_topk, n)
    c = torch.empty(c_shape, device=device, dtype=out_dtype)
    torch.ops.sgl_kernel.cutlass_fp4_group_mm.default(
        c,
        a_fp4,
        b_fp4,
        a_blockscale,
        b_blockscale,
        alphas,
        ab_strides,
        c_strides,
        problem_sizes,
        expert_offsets,
        blockscale_offsets,
    )
    return c.to(dtype=out_dtype)