README.md 5.16 KB
Newer Older
1
# DeepSeek V3 Support
2

3
The SGLang and DeepSeek teams collaborated to get DeepSeek V3 FP8 running on NVIDIA and AMD GPUs **from day one**. SGLang also supports [MLA optimization](https://lmsys.org/blog/2024-09-04-sglang-v0-3/#deepseek-multi-head-latent-attention-mla-throughput-optimizations) and [DP attention](https://lmsys.org/blog/2024-12-04-sglang-v0-4/#data-parallelism-attention-for-deepseek-models), making SGLang one of the best open-source LLM engines for running DeepSeek models. SGLang is the inference engine recommended by the official [DeepSeek team](https://github.com/deepseek-ai/DeepSeek-V3/tree/main?tab=readme-ov-file#62-inference-with-sglang-recommended).
4

Lianmin Zheng's avatar
Lianmin Zheng committed
5
Special thanks to Meituan's Search & Recommend Platform Team and Baseten's Model Performance Team for implementing the model, and DataCrunch for providing GPU resources.
6
7
8
9

## Hardware Recommendation
- 8 x NVIDIA H200 GPUs

10
If you do not have GPUs with large enough memory, please try multi-node tensor parallelism. There is an example serving with [2 H20 nodes](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-2-h208) below.
11

12
13
## Installation & Launch

Yineng Zhang's avatar
Yineng Zhang committed
14
If you encounter errors when starting the server, ensure the weights have finished downloading. It's recommended to download them beforehand or restart multiple times until all weights are downloaded.
15

16
17
### Using Docker (Recommended)
```bash
Yineng Zhang's avatar
Yineng Zhang committed
18
19
20
21
22
# Pull latest image
# https://hub.docker.com/r/lmsysorg/sglang/tags
docker pull lmsysorg/sglang:latest

# Launch
23
docker run --gpus all --shm-size 32g -p 30000:30000 -v ~/.cache/huggingface:/root/.cache/huggingface --ipc=host lmsysorg/sglang:latest \
Ke Bao's avatar
Ke Bao committed
24
    python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-V3 --tp 8 --trust-remote-code --port 30000
25
```
26

Yineng Zhang's avatar
Yineng Zhang committed
27
For high QPS scenarios, add the `--enable-dp-attention` argument to boost throughput.
28
29
30
31

### Using pip
```bash
# Installation
32
pip install "sglang[all]>=0.4.1.post3" --find-links https://flashinfer.ai/whl/cu124/torch2.4/flashinfer
33
34

# Launch
Ke Bao's avatar
Ke Bao committed
35
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-V3 --tp 8 --trust-remote-code
36
```
37

38
39
For high QPS scenarios, add the `--enable-dp-attention` argument to boost throughput.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
### Example with OpenAI API

```python3
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```
59
60
61
62
63
### Example serving with 2 H20*8
For example, there are two H20 nodes, each with 8 GPUs. The first node's IP is `10.0.0.1`, and the second node's IP is `10.0.0.2`.

```bash
# node 1
64
python -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3 --tp 16 --dist-init-addr 10.0.0.1:5000 --nnodes 2 --node-rank 0 --trust-remote-code
65
66

# node 2
67
python -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3 --tp 16 --dist-init-addr 10.0.0.1:5000 --nnodes 2 --node-rank 1 --trust-remote-code
68
```
69

Yineng Zhang's avatar
Yineng Zhang committed
70
71
If you have two H100 nodes, the usage is similar to the aforementioned H20.

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
### Example serving with Docker two H200*8 nodes
There are two H200 nodes, each with 8 GPUs. The first node's IP is `192.168.114.10`, and the second node's IP is `192.168.114.11`. Configure the endpoint to expose it to another Docker container using `--host 0.0.0.0` and `--port 40000`, and set up communications with `--dist-init-addr 192.168.114.10:20000`.
A single H200 with 8 devices can run DeepSeek V3, the dual H200 setup is just to demonstrate multi-node usage.

```bash
# node 1
docker run --gpus all \
    --shm-size 32g \
    --network=host \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --name sglang_multinode1 \
    -it \
    --rm \
    --env "HF_TOKEN=$HF_TOKEN" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3 --tp 16 --dist-init-addr 192.168.114.10:20000 --nnodes 2 --node-rank 0 --trust-remote-code --host 0.0.0.0 --port 40000
```

```bash
# node 2
docker run --gpus all \
    --shm-size 32g \
    --network=host \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --name sglang_multinode2 \
    -it \
    --rm \
    --env "HF_TOKEN=$HF_TOKEN" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path deepseek-ai/DeepSeek-V3 --tp 16 --dist-init-addr 192.168.114.10:20000 --nnodes 2 --node-rank 1 --trust-remote-code --host 0.0.0.0 --port 40000
```

To ensure functionality, we include a test from a client Docker container.
```bash
docker run --gpus all \
    --shm-size 32g \
    --network=host \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --name sglang_multinode_client \
    -it \
    --rm \
    --env "HF_TOKEN=$HF_TOKEN" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.bench_serving --backend sglang --dataset-name random --random-input 1 --random-output 512 --random-range-ratio 1 --num-prompts 1 --host 0.0.0.0 --port 40000 --output-file "deepseekv3_multinode.jsonl"
```

121
## DeepSeek V3 Optimization Plan
122
123

https://github.com/sgl-project/sglang/issues/2591