nvfp4_blockwise_moe.cu 27.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <cutlass/arch/arch.h>
#include <torch/all.h>

#include <cassert>

#include "cute/tensor.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/host/gett.hpp"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/tensor_view_io.h"
30
#include "utils.h"
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

using namespace cute;

template <
    typename ElementAB,
    typename ElementC,
    typename ElementSF,
    typename ElementAccumulator,
    typename LayoutSFA,
    typename LayoutSFB,
    typename ScaleConfig>
__global__ void __get_group_gemm_starts(
    ElementAB** a_offsets,
    ElementAB** b_offsets,
    ElementC** out_offsets,
    ElementSF** a_scales_offsets,
    ElementSF** b_scales_offsets,
    ElementAccumulator** alpha_offsets,
    LayoutSFA* layout_sfa_base_as_int,
    LayoutSFB* layout_sfb_base_as_int,
    ElementAB* a_base_as_int,
    ElementAB* b_base_as_int,
    ElementC* out_base_as_int,
    ElementSF* a_scales_base_as_int,
    ElementSF* b_scales_base_as_int,
    ElementAccumulator* alphas_base_as_int,
    const int32_t* expert_offsets,
    const int32_t* sf_offsets,
    const int32_t* problem_sizes_as_shapes,
    const int K,
    const int N) {
  int64_t expert_id = threadIdx.x;
  if (expert_id >= gridDim.x * blockDim.x) {
    return;
  }
  // Originally int32_t but upcasting to int64_t to avoid overflow
  // during offset calculations
  int64_t expert_offset = static_cast<int64_t>(expert_offsets[expert_id]);
  int64_t sf_offset = static_cast<int64_t>(sf_offsets[expert_id]);
  // size for block in block scale.
  int64_t group_size = 16;
  int64_t m = static_cast<int64_t>(problem_sizes_as_shapes[expert_id * 3]);
  int64_t n = static_cast<int64_t>(problem_sizes_as_shapes[expert_id * 3 + 1]);
  int64_t k = static_cast<int64_t>(problem_sizes_as_shapes[expert_id * 3 + 2]);
  assert((m >= 0 && n == N && k == K && k % 2 == 0) && "unexpected problem sizes");

  int64_t half_k = static_cast<int64_t>(k / 2);
  int64_t group_k = static_cast<int64_t>(k / group_size);
  // Shape of A as uint8/byte = [M, K // 2]
  // Shape of B as uint8/byte = [E, N, K // 2]
  a_offsets[expert_id] = a_base_as_int + expert_offset * half_k;

  b_offsets[expert_id] = b_base_as_int + expert_id * n * half_k;
  // Shape of C = [M, N]
  out_offsets[expert_id] = out_base_as_int + expert_offset * n;
  // Shape of a_scale = [sum(sf_sizes), K // group_size]
  a_scales_offsets[expert_id] = a_scales_base_as_int + sf_offset * group_k;

  assert((reinterpret_cast<uintptr_t>(a_scales_offsets[expert_id]) % 128) == 0 && "TMA requires 128-byte alignment");

  // Shape of B scale = [E, N, K // group_size]
  b_scales_offsets[expert_id] = b_scales_base_as_int + expert_id * n * group_k;
  assert((reinterpret_cast<uintptr_t>(b_scales_offsets[expert_id]) % 128) == 0 && "TMA requires 128-byte alignment");
  // Shape of alpha = [E]
  alpha_offsets[expert_id] = alphas_base_as_int + expert_id;

  LayoutSFA* layout_sfa_ptr = layout_sfa_base_as_int + expert_id;
  LayoutSFB* layout_sfb_ptr = layout_sfb_base_as_int + expert_id;

  *layout_sfa_ptr = ScaleConfig::tile_atom_to_shape_SFA(
      cute::make_shape(static_cast<int>(m), static_cast<int>(n), static_cast<int>(k), 1));
  *layout_sfb_ptr = ScaleConfig::tile_atom_to_shape_SFB(
      cute::make_shape(static_cast<int>(m), static_cast<int>(n), static_cast<int>(k), 1));
}

#define __CALL_GET_STARTS_KERNEL_BLOCKSCALE(                                                            \
    ELEMENT_AB_TYPE, SF_TYPE, TENSOR_C_TYPE, C_TYPE, LayoutSFA, LayoutSFB, ScaleConfig)                 \
  else if (out_tensors.dtype() == TENSOR_C_TYPE) {                                                      \
    __get_group_gemm_starts<ELEMENT_AB_TYPE, C_TYPE, SF_TYPE, float, LayoutSFA, LayoutSFB, ScaleConfig> \
        <<<1, num_experts, 0, stream>>>(                                                                \
            static_cast<ELEMENT_AB_TYPE**>(a_starts.data_ptr()),                                        \
            static_cast<ELEMENT_AB_TYPE**>(b_starts.data_ptr()),                                        \
            static_cast<C_TYPE**>(out_starts.data_ptr()),                                               \
            static_cast<SF_TYPE**>(a_scales_starts.data_ptr()),                                         \
            static_cast<SF_TYPE**>(b_scales_starts.data_ptr()),                                         \
            static_cast<float**>(alpha_starts.data_ptr()),                                              \
            reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()),                                        \
            reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr()),                                        \
            static_cast<ELEMENT_AB_TYPE*>(a_tensors.data_ptr()),                                        \
            static_cast<ELEMENT_AB_TYPE*>(b_tensors.data_ptr()),                                        \
            static_cast<C_TYPE*>(out_tensors.data_ptr()),                                               \
            static_cast<SF_TYPE*>(a_scales.data_ptr()),                                                 \
            static_cast<SF_TYPE*>(b_scales.data_ptr()),                                                 \
            static_cast<float*>(alphas.data_ptr()),                                                     \
            static_cast<int32_t*>(expert_offsets.data_ptr()),                                           \
            static_cast<int32_t*>(sf_offsets.data_ptr()),                                               \
            static_cast<int32_t*>(problem_sizes.data_ptr()),                                            \
            K,                                                                                          \
            N);                                                                                         \
  }

template <typename LayoutSFA, typename LayoutSFB, typename ScaleConfig>
void run_get_group_gemm_starts(
    const torch::Tensor& a_starts,
    const torch::Tensor& b_starts,
    const torch::Tensor& out_starts,
    const torch::Tensor& a_scales_starts,
    const torch::Tensor& b_scales_starts,
    const torch::Tensor& alpha_starts,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    /*these are used for their base addresses*/
    torch::Tensor const& a_tensors,
    torch::Tensor const& b_tensors,
    torch::Tensor const& out_tensors,
    torch::Tensor const& a_scales,
    torch::Tensor const& b_scales,
    torch::Tensor const& alphas,
    torch::Tensor const& expert_offsets,
    torch::Tensor const& sf_offsets,
    torch::Tensor const& problem_sizes,
    int M,
    int N,
    int K) {
  int num_experts = (int)expert_offsets.size(0);
  auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());

  TORCH_CHECK(out_tensors.size(1) == N, "Output tensor shape doesn't match expected shape");
  TORCH_CHECK(
      K / 2 == b_tensors.size(2),
      "b_tensors(dim = 2) and a_tensors(dim = 1) trailing"
      " dimension must match");
  if (false) {
  }
  //(ELEMENT_AB_TYPE, BS_TYPE, TENSOR_C_TYPE, C_TYPE, LayoutSFA, LayoutSFB,
  // ScaleConfig)
  __CALL_GET_STARTS_KERNEL_BLOCKSCALE(
      cutlass::float_e2m1_t,
      cutlass::float_ue4m3_t,
      torch::kBFloat16,
      cutlass::bfloat16_t,
      LayoutSFA,
      LayoutSFB,
      ScaleConfig)
  __CALL_GET_STARTS_KERNEL_BLOCKSCALE(
      cutlass::float_e2m1_t, cutlass::float_ue4m3_t, torch::kFloat16, half, LayoutSFA, LayoutSFB, ScaleConfig)
  else {
    TORCH_CHECK(false, "Invalid output type (must be float16 or bfloat16)");
  }
}

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
void run_fp4_blockwise_scaled_group_mm_sm120(
    torch::Tensor& output,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& a_blockscale,
    const torch::Tensor& b_blockscales,
    const torch::Tensor& alphas,
    const torch::Tensor& ab_strides,
    const torch::Tensor& c_strides,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& sf_offsets,
    int M,
    int N,
    int K) {
  using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int32_t, int32_t, int32_t>>;
  using ElementType = cutlass::float_e2m1_t;
  using ElementSFType = cutlass::float_ue4m3_t;
  using ElementA = cutlass::nv_float4_t<cutlass::float_e2m1_t>;
  using ElementB = cutlass::nv_float4_t<cutlass::float_e2m1_t>;

  using ElementC = cutlass::bfloat16_t;
  using ElementD = cutlass::bfloat16_t;
  using ElementAccumulator = float;
  // Layout definitions
  using LayoutA = cutlass::layout::RowMajor;
  using LayoutB = cutlass::layout::ColumnMajor;
  using LayoutC = cutlass::layout::RowMajor;
  using LayoutD = cutlass::layout::RowMajor;

  // Alignment constraints
  static constexpr int AlignmentA = 32;
  static constexpr int AlignmentB = 32;
  static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
  static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;

  // Architecture definitions
  using ArchTag = cutlass::arch::Sm120;
  using OperatorClass = cutlass::arch::OpClassBlockScaledTensorOp;
  using StageCountType = cutlass::gemm::collective::StageCountAuto;
  using ThreadBlockShape = Shape<_128, _128, _128>;
  // on the tile size

  using ClusterShape = Shape<_1, _1, _1>;

  using FusionOperation =
      cutlass::epilogue::fusion::LinearCombination<ElementD, ElementAccumulator, ElementC, ElementAccumulator>;

  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      ThreadBlockShape,
      ClusterShape,
      cutlass::epilogue::collective::EpilogueTileAuto,
      ElementAccumulator,
      ElementAccumulator,
      ElementC,
      LayoutC*,
      AlignmentC,
      ElementD,
      LayoutC*,
      AlignmentD,
      cutlass::epilogue::collective::EpilogueScheduleAuto,
      FusionOperation>::CollectiveOp;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      ElementA,
      LayoutA*,
      AlignmentA,
      ElementB,
      LayoutB*,
      AlignmentB,
      ElementAccumulator,
      ThreadBlockShape,
      ClusterShape,
      cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
          sizeof(typename CollectiveEpilogue::SharedStorage))>,
      cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpong>::CollectiveOp;

  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop, CollectiveEpilogue>;

  using Gemm1SM = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
  using Gemm = Gemm1SM;
  using StrideA = typename Gemm::GemmKernel::InternalStrideA;
  using StrideB = typename Gemm::GemmKernel::InternalStrideB;
  using StrideC = typename Gemm::GemmKernel::InternalStrideC;
  using StrideD = typename Gemm::GemmKernel::InternalStrideD;

  using LayoutSFA = typename Gemm::GemmKernel::CollectiveMainloop::InternalLayoutSFA;
  using LayoutSFB = typename Gemm::GemmKernel::CollectiveMainloop::InternalLayoutSFB;
  using ScaleConfig = typename Gemm::GemmKernel::CollectiveMainloop::Sm1xxBlkScaledConfig;

  using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
  int num_experts = static_cast<int>(expert_offsets.size(0));
  auto options_int = torch::TensorOptions().dtype(torch::kInt64).device(a.device());

  torch::Tensor a_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor b_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor out_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor a_scales_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor b_scales_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor alpha_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor layout_sfa = torch::empty({num_experts, 5}, options_int);
  torch::Tensor layout_sfb = torch::empty({num_experts, 5}, options_int);

  run_get_group_gemm_starts<LayoutSFA, LayoutSFB, ScaleConfig>(
      a_ptrs,
      b_ptrs,
      out_ptrs,
      a_scales_ptrs,
      b_scales_ptrs,
      alpha_ptrs,
      layout_sfa,
      layout_sfb,
      a,
      b,
      output,
      a_blockscale,
      b_blockscales,
      alphas,
      expert_offsets,
      sf_offsets,
      problem_sizes,
      M,
      N,
      K);

  // Create an instance of the GEMM
  Gemm gemm_op;

  // Initialize problem_sizes_as_shapes correctly
  UnderlyingProblemShape* problem_sizes_as_shapes = static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());

  // Set the Scheduler info
  cutlass::KernelHardwareInfo hw_info;

  using RasterOrderOptions = cutlass::gemm::kernel::detail::RasterOrderOptions;
  typename Gemm::GemmKernel::TileSchedulerArguments scheduler;
  scheduler.raster_order = RasterOrderOptions::AlongM;
  hw_info.device_id = a.get_device();
  static std::unordered_map<int, int> cached_sm_counts;
  if (cached_sm_counts.find(hw_info.device_id) == cached_sm_counts.end()) {
    cached_sm_counts[hw_info.device_id] =
        cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
  }
  hw_info.sm_count = min(cached_sm_counts[hw_info.device_id], INT_MAX);

  // Mainloop Arguments
  typename GemmKernel::MainloopArguments mainloop_args{
      static_cast<const ElementType**>(a_ptrs.data_ptr()),
      static_cast<StrideA*>(ab_strides.data_ptr()),
      static_cast<const ElementType**>(b_ptrs.data_ptr()),
      static_cast<StrideB*>(ab_strides.data_ptr()),
      static_cast<const ElementSFType**>(a_scales_ptrs.data_ptr()),
      reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()),
      static_cast<const ElementSFType**>(b_scales_ptrs.data_ptr()),
      reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr())};

  // Epilogue Arguments
  typename GemmKernel::EpilogueArguments epilogue_args{
      {},  // epilogue.thread
      nullptr,
      static_cast<StrideC*>(c_strides.data_ptr()),
      static_cast<ElementD**>(out_ptrs.data_ptr()),
      static_cast<StrideC*>(c_strides.data_ptr())};
  auto& fusion_args = epilogue_args.thread;
  fusion_args.alpha_ptr_array = reinterpret_cast<float**>(alpha_ptrs.data_ptr());
  fusion_args.dAlpha = {_0{}, _0{}, 1};
  fusion_args.beta = 0.0f;

  // Gemm Arguments
  typename GemmKernel::Arguments args{
      cutlass::gemm::GemmUniversalMode::kGrouped,
      {num_experts, problem_sizes_as_shapes, nullptr},
      mainloop_args,
      epilogue_args,
      hw_info,
      scheduler};

  size_t workspace_size = Gemm::get_workspace_size(args);
  auto const workspace_options = torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
  auto workspace = torch::empty(workspace_size, workspace_options);
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream(a.get_device());

  auto can_implement_status = gemm_op.can_implement(args);
  TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess, "Failed to implement GEMM");

  // Run the GEMM
  auto status = gemm_op.initialize(args, workspace.data_ptr());
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");

  status = gemm_op.run(args, workspace.data_ptr(), stream);
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}

379
template <typename OutType>
380
void run_fp4_blockwise_scaled_group_mm_sm100(
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    torch::Tensor& output,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& a_blockscale,
    const torch::Tensor& b_blockscales,
    const torch::Tensor& alphas,
    const torch::Tensor& ab_strides,
    const torch::Tensor& c_strides,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& sf_offsets,
    int M,
    int N,
    int K) {
  using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int32_t, int32_t, int32_t>>;
  using ElementType = cutlass::float_e2m1_t;
  using ElementSFType = cutlass::float_ue4m3_t;
  using ElementA = cutlass::nv_float4_t<cutlass::float_e2m1_t>;
  using ElementB = cutlass::nv_float4_t<cutlass::float_e2m1_t>;

  using ElementC = OutType;
  using ElementD = ElementC;
  using ElementAccumulator = float;
  // Layout definitions
  using LayoutA = cutlass::layout::RowMajor;
  using LayoutB = cutlass::layout::ColumnMajor;
  using LayoutC = cutlass::layout::RowMajor;
  using LayoutD = LayoutC;

  // Alignment constraints
  static constexpr int AlignmentA = 32;
  static constexpr int AlignmentB = 32;
  static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
  static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;

  // Architecture definitions
  using ArchTag = cutlass::arch::Sm100;
  using EpilogueOperatorClass = cutlass::arch::OpClassTensorOp;             // Epilogue Operator class tag
  using MainloopOperatorClass = cutlass::arch::OpClassBlockScaledTensorOp;  // Mainloop Operator class tag
  using StageCountType = cutlass::gemm::collective::StageCountAuto;         // Stage count maximized based
                                                                            // on the tile size

  using ClusterShape = Shape<_1, _1, _1>;
  struct MMA1SMConfig {
    using MmaTileShape = Shape<_128, _128, _128>;
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmNvf4Sm100;  // Kernel to launch
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;           // Epilogue to launch
  };

  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
      ArchTag,
      EpilogueOperatorClass,
      typename MMA1SMConfig::MmaTileShape,
      ClusterShape,
      Shape<_128, _64>,
      ElementAccumulator,
      ElementAccumulator,
      ElementC,
      LayoutC*,
      AlignmentC,
      ElementD,
      LayoutC*,
      AlignmentD,
      typename MMA1SMConfig::EpilogueSchedule>::CollectiveOp;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
      ArchTag,
      MainloopOperatorClass,
      ElementA,
      LayoutA*,
      AlignmentA,
      ElementB,
      LayoutB*,
      AlignmentB,
      ElementAccumulator,
      typename MMA1SMConfig::MmaTileShape,
      ClusterShape,
      cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
          sizeof(typename CollectiveEpilogue::SharedStorage))>,
      typename MMA1SMConfig::KernelSchedule>::CollectiveOp;

  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop, CollectiveEpilogue>;

  using Gemm1SM = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
  using Gemm = Gemm1SM;
  using StrideA = typename Gemm::GemmKernel::InternalStrideA;
  using StrideB = typename Gemm::GemmKernel::InternalStrideB;
  using StrideC = typename Gemm::GemmKernel::InternalStrideC;
  using StrideD = typename Gemm::GemmKernel::InternalStrideD;

  using LayoutSFA = typename Gemm::GemmKernel::CollectiveMainloop::InternalLayoutSFA;
  using LayoutSFB = typename Gemm::GemmKernel::CollectiveMainloop::InternalLayoutSFB;
  using ScaleConfig = typename Gemm::GemmKernel::CollectiveMainloop::Sm1xxBlkScaledConfig;

  using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
  int num_experts = static_cast<int>(expert_offsets.size(0));
  auto options_int = torch::TensorOptions().dtype(torch::kInt64).device(a.device());

  torch::Tensor a_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor b_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor out_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor a_scales_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor b_scales_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor alpha_ptrs = torch::empty(num_experts, options_int);
  torch::Tensor layout_sfa = torch::empty({num_experts, 5}, options_int);
  torch::Tensor layout_sfb = torch::empty({num_experts, 5}, options_int);

  run_get_group_gemm_starts<LayoutSFA, LayoutSFB, ScaleConfig>(
      a_ptrs,
      b_ptrs,
      out_ptrs,
      a_scales_ptrs,
      b_scales_ptrs,
      alpha_ptrs,
      layout_sfa,
      layout_sfb,
      a,
      b,
      output,
      a_blockscale,
      b_blockscales,
      alphas,
      expert_offsets,
      sf_offsets,
      problem_sizes,
      M,
      N,
      K);

  // Create an instance of the GEMM
  Gemm gemm_op;

  // Initialize problem_sizes_as_shapes correctly
  UnderlyingProblemShape* problem_sizes_as_shapes = static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());

  // Set the Scheduler info
  cutlass::KernelHardwareInfo hw_info;
  using RasterOrderOptions = typename cutlass::gemm::kernel::detail::PersistentTileSchedulerSm100GroupParams<
      typename ProblemShape::UnderlyingProblemShape>::RasterOrderOptions;
  typename Gemm::GemmKernel::TileSchedulerArguments scheduler;
  scheduler.raster_order = RasterOrderOptions::AlongM;
  hw_info.device_id = a.get_device();
  static std::unordered_map<int, int> cached_sm_counts;
  if (cached_sm_counts.find(hw_info.device_id) == cached_sm_counts.end()) {
    cached_sm_counts[hw_info.device_id] =
        cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
  }
  hw_info.sm_count = min(cached_sm_counts[hw_info.device_id], INT_MAX);

  // Mainloop Arguments
  typename GemmKernel::MainloopArguments mainloop_args{
      static_cast<const ElementType**>(a_ptrs.data_ptr()),
      static_cast<StrideA*>(ab_strides.data_ptr()),
      static_cast<const ElementType**>(b_ptrs.data_ptr()),
      static_cast<StrideB*>(ab_strides.data_ptr()),
      static_cast<const ElementSFType**>(a_scales_ptrs.data_ptr()),
      reinterpret_cast<LayoutSFA*>(layout_sfa.data_ptr()),
      static_cast<const ElementSFType**>(b_scales_ptrs.data_ptr()),
      reinterpret_cast<LayoutSFB*>(layout_sfb.data_ptr())};

  // Epilogue Arguments
  typename GemmKernel::EpilogueArguments epilogue_args{
      {},  // epilogue.thread
      nullptr,
      static_cast<StrideC*>(c_strides.data_ptr()),
      static_cast<ElementD**>(out_ptrs.data_ptr()),
      static_cast<StrideC*>(c_strides.data_ptr())};
  auto& fusion_args = epilogue_args.thread;
  fusion_args.alpha_ptr_array = reinterpret_cast<float**>(alpha_ptrs.data_ptr());
  fusion_args.dAlpha = {_0{}, _0{}, 1};

  // Gemm Arguments
  typename GemmKernel::Arguments args{
      cutlass::gemm::GemmUniversalMode::kGrouped,
      {num_experts, problem_sizes_as_shapes, nullptr},
      mainloop_args,
      epilogue_args,
      hw_info,
      scheduler};

  size_t workspace_size = Gemm::get_workspace_size(args);
  auto const workspace_options = torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
  auto workspace = torch::empty(workspace_size, workspace_options);
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream(a.get_device());

  auto can_implement_status = gemm_op.can_implement(args);
  TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess, "Failed to implement GEMM");

  // Run the GEMM
  auto status = gemm_op.initialize(args, workspace.data_ptr());
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");

  status = gemm_op.run(args, workspace.data_ptr(), stream);
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}

577
578
579
580
// Undefine macros from utils.h to redefine with custom signatures
#undef CHECK_CONTIGUOUS
#undef CHECK_INPUT

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
#define CHECK_TYPE(x, st, m) TORCH_CHECK(x.scalar_type() == st, ": Inconsistency of Tensor type:", m)
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, ": must be a CUDA tensor.")
#define CHECK_CONTIGUOUS(x, m) TORCH_CHECK(x.is_contiguous(), m, ": must be contiguous.")
#define CHECK_INPUT(x, st, m) \
  CHECK_TH_CUDA(x, m);        \
  CHECK_CONTIGUOUS(x, m);     \
  CHECK_TYPE(x, st, m)

void cutlass_fp4_group_mm(
    torch::Tensor& output,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& a_blockscale,
    const torch::Tensor& b_blockscales,
    const torch::Tensor& alphas,
    const torch::Tensor& ab_strides,
    const torch::Tensor& c_strides,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& sf_offsets) {
#if defined ENABLE_NVFP4 && ENABLE_NVFP4

  constexpr auto FLOAT4_E2M1X2 = at::ScalarType::Byte;
  constexpr auto SF_DTYPE = at::ScalarType::Float8_e4m3fn;
  // Input validation
  CHECK_INPUT(a, FLOAT4_E2M1X2, "a");
  CHECK_INPUT(b, FLOAT4_E2M1X2, "b");
  CHECK_INPUT(a_blockscale, SF_DTYPE, "a_blockscale");
  CHECK_INPUT(b_blockscales, SF_DTYPE, "b_blockscales");
  CHECK_INPUT(alphas, at::ScalarType::Float, "alphas");

  TORCH_CHECK(
      a_blockscale.dim() == 2,
      "expected a_blockscale to be of shape [num_experts, rounded_m,"
      " k // group_size], observed rank: ",
      a_blockscale.dim())
  TORCH_CHECK(
      b_blockscales.dim() == 3,
      "expected b_blockscale to be of shape: "
      " [num_experts, n, k // group_size], observed rank: ",
      b_blockscales.dim())
  TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be  a 2D tensor");
  TORCH_CHECK(problem_sizes.size(1) == 3, "problem_sizes must have the shape (num_experts, 3)");
  TORCH_CHECK(
      problem_sizes.size(0) == expert_offsets.size(0), "Number of experts in problem_sizes must match expert_offsets");
  TORCH_CHECK(problem_sizes.dtype() == torch::kInt32, "problem_sizes must be int32.");

  int M = static_cast<int>(a.size(0));
  int N = static_cast<int>(b.size(1));
  int E = static_cast<int>(b.size(0));
  int K = static_cast<int>(2 * b.size(2));

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
  auto sm_version = getSMVersion();
  if (sm_version == 100 || sm_version == 103) {
    if (output.scalar_type() == torch::kBFloat16) {
      run_fp4_blockwise_scaled_group_mm_sm100<cutlass::bfloat16_t>(
          output,
          a,
          b,
          a_blockscale,
          b_blockscales,
          alphas,
          ab_strides,
          c_strides,
          problem_sizes,
          expert_offsets,
          sf_offsets,
          M,
          N,
          K);
    } else {
      run_fp4_blockwise_scaled_group_mm_sm100<cutlass::half_t>(
          output,
          a,
          b,
          a_blockscale,
          b_blockscales,
          alphas,
          ab_strides,
          c_strides,
          problem_sizes,
          expert_offsets,
          sf_offsets,
          M,
          N,
          K);
    }
  } else if (sm_version == 120) {
    if (output.scalar_type() == torch::kBFloat16) {
      run_fp4_blockwise_scaled_group_mm_sm120(
          output,
          a,
          b,
          a_blockscale,
          b_blockscales,
          alphas,
          ab_strides,
          c_strides,
          problem_sizes,
          expert_offsets,
          sf_offsets,
          M,
          N,
          K);
    } else {
      std::cout << "run_fp4_blockwise_scaled_group_mm_sm120 half no implementation" << std::endl;
    }
688
  } else {
689
    TORCH_CHECK_NOT_IMPLEMENTED(false, "Unsupported SM version: " + std::to_string(sm_version));
690
691
692
693
694
695
696
697
698
  }
#else
  TORCH_CHECK_NOT_IMPLEMENTED(
      false,
      "No compiled cutlass_fp4_group_mm kernel, sgl-kernel must "
      "be compiled with ENABLE_NVFP4 for SM100+ and CUDA "
      "12.8 or above.");
#endif
}