deepseek_usage.md 4.68 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
# DeepSeek Quick Start
2

3
SGLang provides several optimizations specifically designed for the DeepSeek model to boost its inference speed. This document outlines current optimizations for DeepSeek. Additionally, the SGLang team is actively developing enhancements for [DeepSeek V3](https://github.com/sgl-project/sglang/issues/2591).
4

5
## Launch DeepSeek V3 with SGLang
6

Chayenne's avatar
Chayenne committed
7
8
SGLang is recognized as one of the top engines for [DeepSeek model inference](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3). To run DeepSeek V3/R1 models, the requirements are as follows:

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
| Weight Type | Configuration |
|------------|-------------------|
| **Full precision FP8**<br>*(recommended)* | 8 x H200 |
| | 8 x MI300X |
| | 2 x 8 x H100/800/20 |
| **Full precision BF16** | 2 x 8 x H200 |
| | 2 x 8 x MI300X |
| | 4 x 8 x H100/800/20 |
| | 4 x 8 x A100/A800 |
| **Quantized weights (AWQ)** | 8 x H100/800/20 |
| | 8 x A100/A800 |

<style>
.md-typeset__table {
  width: 100%;
}

.md-typeset__table table {
  border-collapse: collapse;
  margin: 1em 0;
  border: 2px solid var(--md-typeset-table-color);
  table-layout: fixed;
}

.md-typeset__table th {
  border: 1px solid var(--md-typeset-table-color);
  border-bottom: 2px solid var(--md-typeset-table-color);
  background-color: var(--md-default-bg-color--lighter);
  padding: 12px;
}

.md-typeset__table td {
  border: 1px solid var(--md-typeset-table-color);
  padding: 12px;
}

.md-typeset__table tr:nth-child(2n) {
  background-color: var(--md-default-bg-color--lightest);
}
</style>
Chayenne's avatar
Chayenne committed
49
50
51
52
53
54
55
56

Detailed commands for reference:

- [8 x H200](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended)
- [8 x MI300X](https://docs.sglang.ai/references/amd.html#running-deepseek-v3)
- [2 x 8 x H200](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-two-h208-nodes)
- [4 x 8 x A100](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-four-a1008-nodes)
- [8 x A100 (AWQ)](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-8-a100a800-with-awq-quantization)
57
58
59
60
61

### Download Weights

If you encounter errors when starting the server, ensure the weights have finished downloading. It's recommended to download them beforehand or restart multiple times until all weights are downloaded. Please refer to [DeepSeek V3]([https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#installation--launch](https://huggingface.co/deepseek-ai/DeepSeek-V3-Base#61-inference-with-deepseek-infer-demo-example-only)) offical guide to download the weights.

62
63
64
65
### Caching `torch.compile`

The DeepSeek series have huge model weights, it takes some time to compile the model with `torch.compile` for the first time if you have added the flag `--enable-torch-compile`. By default, `torch.compile` will automatically cache the FX graph and Triton in `/tmp/torchinductor_root`, which might be cleared according to the [system policy](https://serverfault.com/questions/377348/when-does-tmp-get-cleared). You can export the environment variable `TORCHINDUCTOR_CACHE_DIR` to save compilation cache in your desired directory to avoid unwanted deletion. You can also share the cache with other machines to reduce the compilation time. You may refer to the [PyTorch official documentation](https://pytorch.org/tutorials/recipes/torch_compile_caching_tutorial.html) and [SGLang Documentation](./torch_compile_cache.md) for more details.

66
67
68
69
70
71
72
73
74
75
### Launch with One node of 8 H200

Please refer to [the example](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#using-docker-recommended). **Note that Deepseek V3 is already in FP8. So we should not run it with any quantization arguments like `--quantization fp8 --kv-cache-dtype fp8_e5m2`.** Also, `--enable-dp-attention` can be useful to improve for Deepseek V3/R1's throughput. Please refer to [Data Parallelism Attention](https://docs.sglang.ai/references/deepseek.html#multi-head-latent-attention-mla-throughput-optimizations) for detail.

### Running examples on Multi-node

- [Serving with two H20*8 nodes](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-two-h208-nodes).

- [Serving with two H200*8 nodes and docker](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-two-h2008-nodes-and-docker).

Jhin's avatar
Jhin committed
76
77
- [Serving with four A100*8 nodes](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3#example-serving-with-four-a1008-nodes).

Xihuai Wang's avatar
Xihuai Wang committed
78

79
80
## FAQ

81
1. **Question**: What should I do if model loading takes too long and NCCL timeout occurs?
82

83
    **Answer**: You can try to add `--dist-timeout 3600` when launching the model, this allows for 1-hour timeout.