test_fp4_quantize.py 7.61 KB
Newer Older
Trevor Morris's avatar
Trevor Morris committed
1
2
import pytest
import torch
3
4
5
6
7
8
from sgl_kernel import (
    scaled_fp4_grouped_quant,
    scaled_fp4_quant,
    silu_and_mul,
    silu_and_mul_scaled_fp4_grouped_quant,
)
Trevor Morris's avatar
Trevor Morris committed
9

10
skip_condition = torch.cuda.get_device_capability() < (10, 0)
Trevor Morris's avatar
Trevor Morris committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

DTYPES = [torch.float16, torch.bfloat16]
SHAPES = [(128, 64), (128, 128), (256, 64), (256, 128)]
PAD_SHAPES = [
    (90, 64),
    (150, 64),
    (128, 48),
    (128, 80),
    (150, 80),
    (90, 48),
    (90, 128),
    (150, 128),
    (150, 48),
    (90, 80),
]

FLOAT4_E2M1_MAX = 6.0
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

# E2M1 to float
# 0111 -> 6
# 0110 -> 4
# 0101 -> 3
# 0100 -> 2
# 0011 -> 1.5
# 0010 -> 1
# 0001 -> 0.5
# 0000 -> 0
E2M1_TO_FLOAT32 = [
    0.0,
    0.5,
    1.0,
    1.5,
    2.0,
    3.0,
    4.0,
    6.0,
    0.0,
    -0.5,
    -1.0,
    -1.5,
    -2.0,
    -3.0,
    -4.0,
    -6.0,
]
BLOCK_SIZE = 16


def cast_from_fp4(x, m, n):
    # The fp4 values are packed in uint8 as [v_1st | v_2nd]
    v_2nd = x & 0xF
    v_1st = (x >> 4) & 0xF
    c = torch.stack((v_2nd, v_1st), dim=-1)
    out = torch.tensor([E2M1_TO_FLOAT32[x] for x in c.flatten()])
    out = out.reshape(m, n).to(torch.float32)
    return out


def cast_to_fp4(x):
    sign = torch.sign(x)
    x = torch.abs(x)
    x[(x >= 0.0) & (x <= 0.25)] = 0.0
    x[(x > 0.25) & (x < 0.75)] = 0.5
    x[(x >= 0.75) & (x <= 1.25)] = 1.0
    x[(x > 1.25) & (x < 1.75)] = 1.5
    x[(x >= 1.75) & (x <= 2.5)] = 2.0
    x[(x > 2.5) & (x < 3.5)] = 3.0
    x[(x >= 3.5) & (x <= 5.0)] = 4.0
    x[x > 5.0] = 6.0
    return x * sign


def get_reciprocal(x):
    if isinstance(x, torch.Tensor):
        return torch.where(x == 0, torch.tensor(0.0, dtype=x.dtype), 1.0 / x)
    elif isinstance(x, (float, int)):
        return 0.0 if x == 0 else 1.0 / x
    else:
        raise TypeError("Input must be a float, int, or a torch.Tensor.")


def ref_nvfp4_quant(x, global_scale):
    assert global_scale.dtype == torch.float32
    assert x.ndim == 2
    m, n = x.shape
    x = torch.reshape(x, (m, n // BLOCK_SIZE, BLOCK_SIZE))
    vec_max = torch.max(torch.abs(x), dim=-1, keepdim=True)[0].to(torch.float32)
    scale = global_scale * (vec_max * get_reciprocal(FLOAT4_E2M1_MAX))
    scale = scale.to(torch.float8_e4m3fn).to(torch.float32)
    output_scale = get_reciprocal(scale * get_reciprocal(global_scale))

    scaled_x = x.to(torch.float32) * output_scale
    clipped_x = torch.clamp(scaled_x, -6.0, 6.0).reshape(m, n)
    return cast_to_fp4(clipped_x), scale.squeeze(-1)


def recover_swizzled_scales(scale, m, n):
    rounded_m = ((m + 128 - 1) // 128) * 128
    scale_n = n // BLOCK_SIZE
    rounded_n = ((scale_n + 4 - 1) // 4) * 4
    # Recover the swizzled scaling factor to linear layout
    tmp = torch.reshape(scale, (1, rounded_m // 128, rounded_n // 4, 32, 4, 4))
    tmp = torch.permute(tmp, (0, 1, 4, 3, 2, 5))
    result = torch.reshape(tmp, (rounded_m, rounded_n)).to(torch.float32)
    return result[:m, :scale_n]


119
120
121
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
Trevor Morris's avatar
Trevor Morris committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("shape", SHAPES)
@torch.inference_mode()
def test_quantize_to_fp4(
    dtype: torch.dtype,
    shape: tuple[int, int],
) -> None:
    torch.manual_seed(42)
    torch.set_default_device("cuda:0")

    m, n = shape

    x = torch.randn((m, n), dtype=dtype)
    tensor_amax = torch.abs(x).max().to(torch.float32)
    global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
    out_ref, scale_ref = ref_nvfp4_quant(x, global_scale)

    out, out_scale = scaled_fp4_quant(x, global_scale)
    scale_ans = recover_swizzled_scales(out_scale, m, n)
    out_ans = cast_from_fp4(out, m, n)

    torch.testing.assert_close(out_ans, out_ref)
    torch.testing.assert_close(scale_ans, scale_ref)


147
148
149
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
Trevor Morris's avatar
Trevor Morris committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
@pytest.mark.parametrize("pad_shape", PAD_SHAPES)
@torch.inference_mode()
def test_quantize_to_fp4_padded(pad_shape: tuple[int, int]) -> None:
    torch.manual_seed(42)
    dtype = torch.float16
    torch.set_default_device("cuda:0")

    m, n = pad_shape

    x = torch.randn((m, n), dtype=dtype)

    tensor_amax = torch.abs(x).max().to(torch.float32)
    global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
    out_ref, scale_ref = ref_nvfp4_quant(x, global_scale)

    out, out_scale = scaled_fp4_quant(x, global_scale)

    scale_ans = recover_swizzled_scales(out_scale, m, n)
    out_ans = cast_from_fp4(out, m, n)

    torch.testing.assert_close(out_ans, out_ref)
    torch.testing.assert_close(scale_ans, scale_ref)
172
173


174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
def test_quantize_to_fp4_grouped():
    torch.manual_seed(42)
    torch.set_default_device("cuda:0")

    l, m, k = 2, 512, 2048
    x = torch.randn((l, m, k), dtype=torch.bfloat16)
    tensor_amax = x.abs().amax(dim=(1, 2)).to(torch.float32)
    x_sf_global = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
    output, output_scales = scaled_fp4_grouped_quant(
        x,
        x_sf_global,
    )
    # output in logical (m, k, l), but its physical layout is (l, m, k).
    # So permute first to (l, m, k).
    output = output.permute(2, 0, 1)
    # output_scale in logical (32, 4, rm, 4, rk, l), but its physical layout is (l, rm, rk, 32, 4, 4).
    # So permute first to (l, rm, rk, 32, 4, 4).
    padded_m = ((m + 128 - 1) // 128) * 128
    output_scales = output_scales.permute(5, 2, 4, 0, 1, 3).view(l, padded_m, -1)
    for i in range(l):
        a_fp4, a_scale_interleaved = scaled_fp4_quant(x[i], x_sf_global[i])
        torch.testing.assert_close(a_fp4, output[i])
        torch.testing.assert_close(
            a_scale_interleaved.to(torch.float), output_scales[i].to(torch.float)
        )


@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
@pytest.mark.parametrize("shape", [(32, 100, 2048), (32, 512, 2048)])
def test_silu_and_mul_quantize_to_fp4_grouped(shape: tuple[int, int]) -> None:
    torch.manual_seed(42)
    torch.set_default_device("cuda:0")

    l, m, k = shape
    x = torch.randn((l, m, k * 2), dtype=torch.bfloat16)
    max_m = 8
    assert max_m <= m
    mask = torch.randint(1, max_m, (l,), dtype=torch.int32)

    ref_y = silu_and_mul(x)
    tensor_amax = ref_y.abs().amax(dim=(1, 2)).to(torch.float32)
    y_sf_global = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
    ref_output, ref_output_scales = scaled_fp4_grouped_quant(
        ref_y,
        y_sf_global,
    )
    output, output_scales = silu_and_mul_scaled_fp4_grouped_quant(
        x,
        y_sf_global,
        mask,
    )

    # output in logical (m, k, l), but its physical layout is (l, m, k).
    # So permute first to (l, m, k).
    output = output.permute(2, 0, 1)
    ref_output = ref_output.permute(2, 0, 1)

    # output_scale in logical (32, 4, rm, 4, rk, l), but its physical layout is (l, rm, rk, 32, 4, 4).
    # So permute first to (l, rm, rk, 32, 4, 4).
    padded_m = ((m + 128 - 1) // 128) * 128
    output_scales = output_scales.permute(5, 2, 4, 0, 1, 3).view(l, padded_m, -1)
    ref_output_scales = ref_output_scales.permute(5, 2, 4, 0, 1, 3).view(
        l, padded_m, -1
    )

    for i in range(l):
        torch.testing.assert_close(ref_output[i, : mask[i]], output[i, : mask[i]])
        # We need to recover the swizzled scales to linear layout before applying mask slice.
        scale_ref = recover_swizzled_scales(ref_output_scales[i], m, k)
        scale_ans = recover_swizzled_scales(output_scales[i], m, k)
        torch.testing.assert_close(scale_ref[: mask[i]], scale_ans[: mask[i]])


252
253
if __name__ == "__main__":
    pytest.main([__file__])