test_verl_engine.py 9.47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import multiprocessing
import multiprocessing as mp
import os
import random
import traceback
import unittest
from multiprocessing import Process

import torch
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import CPUOffload
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp.api import (
    ShardedStateDictConfig,
    ShardingStrategy,
    StateDictType,
)
from transformers import AutoModelForCausalLM

from sglang.srt.entrypoints.verl_engine import VerlEngine
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import is_port_available
from sglang.test.runners import (
    HFRunner,
    SRTRunner,
    check_close_model_outputs,
    get_dtype_str,
)
from sglang.test.test_utils import is_in_ci

_MAX_NEW_TOKENS = 8
_PROMPTS = ["1+1=2, 1+2=3, 1+3=4, 1+4=5, 1+5=", "1*1=1, 1*2=2, 1*3=3, 1*4=4, 1*5="]
_TORCH_DTYPE = torch.float16

# Set to false to temporarily debug issues unrelated to weight update
_ENABLE_UPDATE_WEIGHTS = True
# _ENABLE_UPDATE_WEIGHTS = False

# TODO maybe we should add more other models? should we keep it in sync with test_generation_models.py?
CI_MODELS = [
    dict(model_path="meta-llama/Llama-3.1-8B-Instruct"),
    dict(model_path="google/gemma-2-2b"),
]
ALL_OTHER_MODELS = [
    dict(model_path="meta-llama/Llama-3.2-1B-Instruct"),
    dict(model_path="Qwen/Qwen2-1.5B"),
    dict(
        model_path="Qwen/Qwen2.5-14B-Instruct",
        mem_fraction_static=0.4,
        tp_size=8,
        tight_memory=True,
        decode_tolerance=1.3,
    ),  # test_generation_models.py same config (qwen + tp=8) gives 1.22 decode error
    dict(model_path="HuggingFaceTB/SmolLM-135M-Instruct", tp_size=3),
    dict(model_path="allenai/OLMo-1B-0724-hf"),
    dict(
        model_path="THUDM/glm-4-9b-chat",
        mem_fraction_static=0.1,
        tp_size=8,
        tight_memory=True,
    ),
    dict(model_path="allenai/OLMo-2-1124-7B-Instruct"),
    dict(
        model_path="ibm-granite/granite-3.0-2b-instruct",
        prefill_tolerance=0.22,
        decode_tolerance=0.22,
    ),
    # Fail to run these models in test_generation_models.py, need to fix that first
    # dict(model_path="openai-community/gpt2"),
    # dict(model_path="microsoft/Phi-3-small-8k-instruct"),
]


class TestVerlEngine(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        multiprocessing.set_start_method("spawn")

    def assert_fragment_e2e_execution(
        self,
        index: int,
        model_path: str,
        mem_fraction_static: float = 0.4,
        tp_size: int = 2,
        tight_memory: bool = False,
        prefill_tolerance: float = 0.1,
        decode_tolerance: float = 0.1,
    ):
        master_port = find_available_port(23456)

        print(f"assert_fragment_e2e_execution START {index=} {model_path=}")

        processes = []
        output_reader, output_writer = mp.Pipe(duplex=False)
        for tp_rank in range(tp_size):
            p = Process(
                target=_run_subprocess,
                kwargs=dict(
                    tp_rank=tp_rank,
                    tp_size=tp_size,
                    master_port=master_port,
                    output_writer=output_writer,
                    model_path=model_path,
                    mem_fraction_static=mem_fraction_static,
                    tight_memory=tight_memory,
                    prefill_tolerance=prefill_tolerance,
                    decode_tolerance=decode_tolerance,
                ),
            )
            p.start()
            processes.append(p)

        for _ in range(tp_size):
            self.assertTrue(
                output_reader.recv(),
                f"Subprocess has error, please see logs above. ({index=} {model_path=})",
            )

        for p in processes:
            p.join()

    def test_ci_models(self):
        for index, model_info in enumerate(CI_MODELS):
            self.assert_fragment_e2e_execution(index=index, **model_info)

    def test_others(self):
        if is_in_ci():
            return

        for index, model_info in enumerate(ALL_OTHER_MODELS):
            self.assert_fragment_e2e_execution(index=index, **model_info)

    # def test_adhoc(self):
    #     self.assert_fragment_e2e_execution(index=0, model_path="meta-llama/Llama-3.2-1B-Instruct")


def _run_subprocess(
    tp_rank: int,
    tp_size: int,
    master_port: int,
    output_writer,
    model_path: str,
    mem_fraction_static: float,
    tight_memory: bool,
    prefill_tolerance: float,
    decode_tolerance: float,
):
    try:
        print(f"subprocess[{tp_rank=}] Start {os.environ.get('CUDA_VISIBLE_DEVICES')=}")

        os.environ["MASTER_ADDR"] = "localhost"
        os.environ["MASTER_PORT"] = str(master_port)
        torch.distributed.init_process_group(rank=tp_rank, world_size=tp_size)
        torch.cuda.set_device(tp_rank)

        mesh_kwargs = dict(mesh_shape=(tp_size, 1), mesh_dim_names=["tp", "pp"])
        inference_device_mesh_device = init_device_mesh("cuda", **mesh_kwargs)
        inference_device_mesh_cpu = init_device_mesh("cpu", **mesh_kwargs)
        print(
            f"subprocess[{tp_rank=}] {inference_device_mesh_device=} {inference_device_mesh_cpu=}"
        )

        # hf model is used for comparison
        hf_model = AutoModelForCausalLM.from_pretrained(
            model_path, torch_dtype=_TORCH_DTYPE, trust_remote_code=True
        ).cuda()
        hf_tokenizer = get_tokenizer(model_path, trust_remote_code=True)

        hf_outputs = HFRunner.forward_generation_raw(
            prompts=_PROMPTS,
            max_new_tokens=_MAX_NEW_TOKENS,
            base_model=hf_model,
            tokenizer=hf_tokenizer,
            lora_paths=None,
            torch_dtype=_TORCH_DTYPE,
            output_str_only=False,
        )
        print(
            f"subprocess[{tp_rank=}] call hf.forward {hf_outputs=}",
            flush=True,
        )

        if _ENABLE_UPDATE_WEIGHTS:
            if tight_memory:
                hf_model.cpu()
                torch.cuda.empty_cache()

            # test update weights
            print(f"subprocess[{tp_rank=}] get_fsdp_state_dict", flush=True)
            fsdp_state_dict = _get_fsdp_state_dict(hf_model=hf_model, tp_size=tp_size)

        engine = VerlEngine(
            model_path=model_path,
            load_format="dummy" if _ENABLE_UPDATE_WEIGHTS else "auto",
            mem_fraction_static=mem_fraction_static,
            random_seed=42,
            trust_remote_code=True,
            dtype=get_dtype_str(_TORCH_DTYPE),
            device_mesh_cpu=inference_device_mesh_cpu["tp"],
        )
        print(f"subprocess[{tp_rank=}] {engine=}", flush=True)

        if _ENABLE_UPDATE_WEIGHTS:
            print(f"subprocess[{tp_rank=}] call update_weights_from_tensor", flush=True)
            engine.update_weights_from_tensor(
                [(k, v) for k, v in fsdp_state_dict.items()]
            )

        for enable_batch in [False, True]:
            if enable_batch:
                fn = SRTRunner.batch_forward_generation_raw
            else:
                fn = SRTRunner.forward_generation_raw

            srt_outputs = fn(
                prompts=_PROMPTS,
                max_new_tokens=_MAX_NEW_TOKENS,
                lora_paths=None,
                engine=engine,
            )
            print(
                f"subprocess[{tp_rank=}] call srt.forward {enable_batch=} {srt_outputs=}",
                flush=True,
            )

            check_close_model_outputs(
                hf_outputs=hf_outputs,
                srt_outputs=srt_outputs,
                prefill_tolerance=prefill_tolerance,
                decode_tolerance=decode_tolerance,
                rouge_l_tolerance=1,
                check_logprobs=not enable_batch,
                debug_text=f"{enable_batch=} {tp_rank=}",
            )

        execution_ok = True

    except Exception as e:
        print(f"subprocess[{tp_rank=}] has error: {e}", flush=True)
        traceback.print_exc()
        execution_ok = False

    output_writer.send(execution_ok)
    output_writer.close()

    engine.shutdown()
    print(f"subprocess[{tp_rank=}] end", flush=True)


# Adapted from https://github.com/volcengine/verl/blob/main/tests/rollout/run_fsdp_vllm.py
def _get_fsdp_state_dict(hf_model, tp_size: int):
    device_mesh = init_device_mesh(
        "cuda", mesh_shape=(tp_size,), mesh_dim_names=["fsdp"]
    )

    mixed_precision = MixedPrecision(
        param_dtype=torch.bfloat16,
        reduce_dtype=torch.float32,
        buffer_dtype=torch.float32,
    )
    fsdp_model = FSDP(
        hf_model,
        use_orig_params=True,
        auto_wrap_policy=None,
        device_id=torch.cuda.current_device(),
        sharding_strategy=ShardingStrategy.FULL_SHARD,
        mixed_precision=mixed_precision,
        cpu_offload=CPUOffload(offload_params=False),
        sync_module_states=False,
        device_mesh=device_mesh,
    )
    print(f"{fsdp_model=}")

    FSDP.set_state_dict_type(
        fsdp_model,
        state_dict_type=StateDictType.SHARDED_STATE_DICT,
        state_dict_config=ShardedStateDictConfig(),
    )

    return fsdp_model.state_dict()


# TODO Ask: this is extracted from PortArgs.init_new, is it allowed to extract it, i.e. touch that old code
def find_available_port(base_port: int):
    port = base_port + random.randint(100, 1000)
    while True:
        if is_port_available(port):
            return port
        if port < 60000:
            port += 42
        else:
            port -= 43


if __name__ == "__main__":
    unittest.main()