test_update_weights_from_tensor.py 2.02 KB
Newer Older
1
import time
2
3
4
5
6
7
8
9
import unittest

import torch

import sglang as sgl
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST


10
11
class TestUpdateWeightsFromTensor(unittest.TestCase):
    def test_update_weights_from_tensor(self):
12
13
        engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

14
        param_names = [f"model.layers.{i}.mlp.up_proj.weight" for i in range(6, 16)]
15

16
        _check_param(engine, param_names[0], [0.0087, -0.0214, -0.0004, 0.0039, 0.0110])
17

18
        new_tensor = torch.full((16384, 2048), 1.5)
19

20
21
22
        time_start = time.time()
        engine.update_weights_from_tensor([(x, new_tensor) for x in param_names])
        print(f"Time delta: {time.time() - time_start:.03f}")
23

24
25
        for param_name in param_names[:3]:
            _check_param(engine, param_name, [1.5] * 5)
26
27
28

        engine.shutdown()

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    def test_update_weights_from_tensor_load_format_direct(self):
        engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

        write_param_names = [
            f"model.layers.{i}.self_attn.qkv_proj.weight" for i in range(6, 16)
        ]
        read_param_names = [
            f"model.layers.{i}.self_attn.k_proj.weight" for i in range(6, 16)
        ]

        _check_param(
            engine, read_param_names[0], [-0.0198, 0.0227, 0.0168, 0.0232, -0.0178]
        )

        new_tensor = torch.full((3072, 2048), 1.5)
        engine.update_weights_from_tensor(
            [
                (write_param_name, new_tensor.clone())
                for write_param_name in write_param_names
            ],
            load_format="direct",
        )

        for read_param_name in read_param_names[:3]:
            _check_param(engine, read_param_name, [1.5] * 5)

        engine.shutdown()

57

58
59
60
61
62
63
64
def _check_param(engine, param_name, expect_values):
    actual_values = torch.tensor(engine.get_weights_by_name(param_name))[0, :5]
    assert torch.allclose(
        actual_values, torch.tensor(expect_values), atol=0.002
    ), f"{actual_values=}"


65
66
if __name__ == "__main__":
    unittest.main()