test_cross_encoder_models.py 2.62 KB
Newer Older
woodx's avatar
woodx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import multiprocessing as mp
import random
import unittest

import torch
from transformers import AutoConfig, AutoTokenizer

from sglang.test.runners import TEST_RERANK_QUERY_DOCS, HFRunner, SRTRunner
from sglang.test.test_utils import CustomTestCase, is_in_ci

MODELS = [
    ("cross-encoder/ms-marco-MiniLM-L6-v2", 1, 1e-2),
    ("BAAI/bge-reranker-v2-m3", 1, 1e-2),
]
ATTENTION_BACKEND = ["torch_native", "triton"]

TORCH_DTYPES = [torch.float32]


class TestCrossEncoderModels(CustomTestCase):

    @classmethod
    def setUpClass(cls):
        mp.set_start_method("spawn", force=True)

    def assert_close_prefill_logits(
        self,
        prompts,
        model_path,
        tp_size,
        torch_dtype,
        score_tolerance,
        attention_backend,
    ) -> None:
        with HFRunner(
            model_path,
            torch_dtype=torch_dtype,
            model_type="cross_encoder",
        ) as hf_runner:
            hf_scores = hf_runner.forward(prompts).scores

        with SRTRunner(
            model_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
            model_type="cross_encoder",
            attention_backend=attention_backend,
            chunked_prefill_size=-1,
            disable_radix_cache=True,
        ) as srt_runner:
            srt_scores = srt_runner.forward(prompts).scores

        for i in range(len(srt_scores)):
            score_difference = abs(hf_scores[i] - srt_scores[i])

            assert (
                score_difference < score_tolerance
            ), "cross encoder scores are not all close"

    def preprocess_prompts(self, prompt):
        processed_prompts = []
        query = prompt["query"]
        documents = prompt["documents"]
        for document in documents:
            processed_prompts.append([query, document])

        return processed_prompts

    def test_prefill_logits(self):
        models_to_test = MODELS

        if is_in_ci():
            models_to_test = [random.choice(MODELS)]

        for model, tp_size, prefill_tolerance in models_to_test:
            for attention_backend in ATTENTION_BACKEND:
                for queryDocs in TEST_RERANK_QUERY_DOCS:
                    prompts = self.preprocess_prompts(queryDocs)
                    for torch_dtype in TORCH_DTYPES:
                        self.assert_close_prefill_logits(
                            prompts,
                            model,
                            tp_size,
                            torch_dtype,
                            prefill_tolerance,
                            attention_backend,
                        )


if __name__ == "__main__":
    unittest.main()