"...DensePose/densepose/evaluation/d2_evaluator_adapter.py" did not exist on "5b3792fc3ef9ab6a6f8f30634ab2e52fb0941af3"
common_extension.cc 23.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
15
#include <ATen/core/dispatch/Dispatcher.h>
16
#include <torch/all.h>
17
18
#include <torch/library.h>

19
#include "sgl_kernel_ops.h"
20

21
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
22
23
24
  /*
   * From csrc/allreduce
   */
25
26
27
  m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
  m.def("register_graph_buffers", &register_graph_buffers);
  m.def("dispose", &dispose);
28
29
  m.def("meta_size", &meta_size);
  m.def("register_buffer", &register_buffer);
30
31

  m.def(
32
33
      "init_custom_ar(int[] ipc_tensors, Tensor rank_data, "
      "int rank, bool full_nvlink) -> int");
34
35
  m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

36
37
38
  m.def(
      "all_reduce(int fa, Tensor inp, Tensor! out, int reg_buffer, "
      "int reg_buffer_sz_bytes) -> ()");
39
  m.impl("all_reduce", torch::kCUDA, &all_reduce);
40
41
42
43
44
45
46
47
48

  m.def("mscclpp_generate_unique_id", &mscclpp_generate_unique_id);
  m.def(
      "mscclpp_init_context(Tensor unique_id, int rank, int world_size, Tensor scratch, Tensor put_buffer, "
      "int nranks_per_node, int[] rank_to_node, int[] rank_to_ib, int context_selection) -> int");
  m.impl("mscclpp_init_context", torch::kCUDA, &mscclpp_init_context);

  m.def("mscclpp_allreduce(int context, Tensor inp, Tensor! out, int nthreads, int nblocks) -> ()");
  m.impl("mscclpp_allreduce", torch::kCUDA, &mscclpp_allreduce);
Lianmin Zheng's avatar
Lianmin Zheng committed
49

50
51
52
  /*
   * From csrc/attention
   */
53
54
55
56
  m.def(
      "lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
      "new_kv) -> ()");
  m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);
Yineng Zhang's avatar
Yineng Zhang committed
57
58
  m.def("merge_state(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state", torch::kCUDA, &merge_state);
59
60
  m.def("merge_state_v2(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state_v2", torch::kCUDA, &merge_state_v2);
61
  m.def(
62
      "cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe, Tensor kv_c_and_k_pe_cache, Tensor seq_lens, Tensor "
63
      "page_table, Tensor! workspace, float sm_scale, int num_kv_splits) -> ()");
64
65
  m.impl("cutlass_mla_decode", torch::kCUDA, &cutlass_mla_decode);
  m.def("cutlass_mla_get_workspace_size", &cutlass_mla_get_workspace_size);
66

67
68
69
  /*
   * From csrc/elementwise
   */
70
  m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
71
72
  m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

73
  m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
74
75
  m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

76
  m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
77
78
  m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

79
  m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
80
81
  m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

82
  m.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
83
84
  m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

85
  m.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
86
87
  m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

88
  m.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
89
90
91
92
  m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

  m.def(
      "apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
93
      "Tensor pos_ids, bool interleave, bool enable_pdl, int cuda_stream, "
94
      "Tensor? v, Tensor!? k_buffer, Tensor!? v_buffer, Tensor? kv_cache_loc) -> ()");
95
  m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);
96

97
98
99
100
101
  m.def(
      "downcast_fp8(Tensor k, Tensor v, Tensor k_out, Tensor v_out, Tensor k_scale, Tensor v_scale, Tensor loc, int "
      "mult, int offset, int cuda_stream) -> ()");
  m.impl("downcast_fp8", torch::kCUDA, &downcast_fp8);

102
103
104
105
106
  m.def("copy_to_gpu_no_ce(Tensor input, Tensor! output) -> ()");
  m.impl("copy_to_gpu_no_ce", torch::kCUDA, &copy_to_gpu_no_ce);
  m.def("concat_mla_k(Tensor! k, Tensor k_nope, Tensor k_rope) -> ()");
  m.impl("concat_mla_k", torch::kCUDA, &concat_mla_k);

107
108
109
  m.def("concat_mla_absorb_q(Tensor a, Tensor b, Tensor! out) -> ()");
  m.impl("concat_mla_absorb_q", torch::kCUDA, &concat_mla_absorb_q);

110
111
112
113
114
115
116
  m.def("fast_topk(Tensor score, Tensor indices, Tensor lengths) -> ()");
  m.impl("fast_topk", torch::kCUDA, &fast_topk_interface);
  m.def(
      "fast_topk_transform_fused(Tensor score, Tensor lengths, Tensor dst_page_table, Tensor src_page_table, Tensor "
      "cu_seqlens_q) -> ()");
  m.impl("fast_topk_transform_fused", torch::kCUDA, &fast_topk_transform_interface);

117
118
119
  /*
   * From csrc/gemm
   */
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
  m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

  m.def(
      "int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

  m.def(
      "fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

  m.def(
      "fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
      "Tensor");
  m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

  m.def(
139
140
141
142
143
144
145
146
      "sgl_per_token_group_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float fp8_min, float fp8_max, bool scale_ue8m0) -> ()");
  m.impl("sgl_per_token_group_quant_fp8", torch::kCUDA, &sgl_per_token_group_quant_fp8);

  m.def(
      "sgl_per_token_group_quant_int8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float int8_min, float int8_max) -> ()");
  m.impl("sgl_per_token_group_quant_int8", torch::kCUDA, &sgl_per_token_group_quant_int8);
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

  m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
  m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

  m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
  m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

  m.def(
      "cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
      "                      Tensor block_scale_a, Tensor block_scale_b,"
      "                      Tensor alpha) -> ()");
  m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

  m.def(
      "scaled_fp4_quant(Tensor! output, Tensor! input,"
      "                 Tensor! output_scale, Tensor! input_scale) -> ()");
  m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
Trevor Morris's avatar
Trevor Morris committed
164

165
166
167
  m.def("dsv3_fused_a_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_fused_a_gemm", torch::kCUDA, &dsv3_fused_a_gemm);

168
169
170
171
172
173
174
  // Compute NVFP4 experts quantization.
  m.def(
      "scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
      "Tensor input, Tensor input_global_scale, Tensor input_offset_by_experts,"
      "Tensor output_scale_offset_by_experts) -> ()");
  m.impl("scaled_fp4_experts_quant", torch::kCUDA, &scaled_fp4_experts_quant);

175
176
  m.def(
      "silu_and_mul_scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
177
      "Tensor input, Tensor input_global_scale, Tensor mask, bool use_silu_and_mul) -> ()");
178
179
  m.impl("silu_and_mul_scaled_fp4_experts_quant", torch::kCUDA, &silu_and_mul_scaled_fp4_experts_quant);

180
181
182
183
184
185
186
  m.def(
      "cutlass_fp4_group_mm(Tensor! output, Tensor a, Tensor b,"
      "Tensor a_blockscale, Tensor b_blockscale, Tensor alphas,"
      "Tensor ab_strides, Tensor c_strides, Tensor problem_sizes,"
      " Tensor expert_offsets, Tensor sf_offsets) -> ()");
  m.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);

187
188
189
  m.def("dsv3_router_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_router_gemm", torch::kCUDA, &dsv3_router_gemm);

190
191
192
  /*
   * From csrc/gemm/gptq
   */
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  m.def(
      "gptq_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? global_scale_or_none,"
      "Tensor? b_zeros_or_none, Tensor? g_idx_or_none, Tensor? perm_or_none,"
      "Tensor! workspace, int b_q_type_id, int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add, bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm);

  m.def(
      "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, Tensor b_gptq_scales, Tensor b_g_idx, bool "
      "use_shuffle, int bit) -> Tensor");
  m.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);

  m.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()");
  m.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle);

  m.def("gptq_marlin_repack(Tensor! b_q_weight, Tensor! perm, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack);

  m.def("awq_marlin_repack(Tensor! b_q_weight, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack);
214

215
216
217
  /*
   * From csrc/moe
   */
218
219
  m.def(
      "moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
220
      "experts_ids, Tensor! num_tokens_post_pad, Tensor! cumsum_buffer, bool "
221
      "pad_sorted_token_ids) -> ()");
222
223
  m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);

224
  m.def("topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor gating_output, bool renormalize) -> ()");
225
  m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
226

227
228
  m.def("moe_sum_reduce(Tensor input, Tensor output, float routed_scaling_factor) -> ()");
  m.impl("moe_sum_reduce", torch::kCUDA, &moe_sum_reduce);
229
  m.def(
230
      "moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk, int "
231
      "num_fused_shared_experts, float routed_scaling_factor, bool apply_routed_scaling_factor_on_output) -> "
232
233
      "(Tensor[])");
  m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);
234
  m.def(
235
236
      "fp8_blockwise_scaled_grouped_mm(Tensor output, Tensor a_ptrs, Tensor b_ptrs, Tensor out_ptrs, Tensor "
      "a_scales_ptrs, Tensor b_scales_ptrs, Tensor a, Tensor b, Tensor scales_a, Tensor scales_b, Tensor "
237
      "stride_a, Tensor stride_b, Tensor stride_c, Tensor layout_sfa, Tensor layout_sfb, Tensor problem_sizes, Tensor "
238
      "expert_offsets, Tensor workspace) -> ()");
239
  m.impl("fp8_blockwise_scaled_grouped_mm", torch::kCUDA, &fp8_blockwise_scaled_grouped_mm);
240
  m.def(
241
242
243
      "prepare_moe_input(Tensor topk_ids, Tensor expert_offsets, Tensor? blockscale_offsets, Tensor problem_sizes1,"
      " Tensor problem_sizes2, Tensor input_permutation, Tensor output_permutation, int num_experts, int n, int k) -> "
      "()");
244
  m.impl("prepare_moe_input", torch::kCUDA, &prepare_moe_input);
245
246
247

  m.def("shuffle_rows(Tensor input, Tensor dst2src_map, Tensor output) -> ()");
  m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
248
249
  m.def("apply_shuffle_mul_sum(Tensor input, Tensor output, Tensor permutation, Tensor? factors) -> ()");
  m.impl("apply_shuffle_mul_sum", torch::kCUDA, &apply_shuffle_mul_sum);
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
  /*
   * From csrc/moe/marlin_moe_wna16
   */
  m.def(
      "moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? b_zeros_or_none,"
      "Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
      "Tensor sorted_token_ids,"
      "Tensor! expert_ids, Tensor! num_tokens_past_padded,"
      "Tensor! topk_weights, int moe_block_size, int top_k, "
      "bool mul_topk_weights, bool is_ep, int b_q_type_id,"
      "int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add,"
      "bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("moe_wna16_marlin_gemm", torch::kCUDA, &moe_wna16_marlin_gemm);

  /*
   * From csrc/moe/cutlass_moe/w4a8
   */
  m.def(
      "get_cutlass_w4a8_moe_mm_data(Tensor topk_ids, Tensor! expert_offsets, "
      "                        Tensor! problem_sizes1, Tensor! problem_sizes2, "
      "                        Tensor! input_permutation, "
      "                        Tensor! output_permutation, int num_experts, "
      "                        int n, int k) -> ()");
  m.impl("get_cutlass_w4a8_moe_mm_data", torch::kCUDA, &get_cutlass_w4a8_moe_mm_data);

  m.def(
      "cutlass_w4a8_moe_mm(Tensor! d, Tensor a, Tensor b, "
      "               Tensor a_scales, Tensor b_scales, Tensor expert_offsets, "
      "               Tensor problem_sizes, Tensor a_strides, "
      "               Tensor b_strides, Tensor d_strides, Tensor s_strides,"
      "               int chunk_size, int topk) -> ()");
  m.impl("cutlass_w4a8_moe_mm", torch::kCUDA, &cutlass_w4a8_moe_mm);

286
287
288
  /*
   * From csrc/speculative
   */
289
290
291
  m.def(
      "tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
292
      "Tensor uniform_samples, Tensor uniform_samples_for_final_sampling, Tensor target_probs, Tensor draft_probs, "
293
294
295
296
297
298
299
300
301
302
      "float threshold_single, float threshold_acc, "
      "bool deterministic, int cuda_stream) -> ()");
  m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);

  m.def(
      "verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor target_predict, int cuda_stream) -> ()");
  m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

303
304
305
306
307
308
  m.def(
      "reconstruct_indices_from_tree_mask(Tensor tree_mask, Tensor verified_seq_len, Tensor positions, "
      "Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "int batch_size, int draft_token_num) -> ()");
  m.impl("reconstruct_indices_from_tree_mask", torch::kCUDA, &reconstruct_indices_from_tree_mask);

309
310
311
  m.def(
      "build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
      "Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
312
313
      "Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num, int tree_mask_mode) -> "
      "()");
314
315
  m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);

316
317
318
  m.def(
      "segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int batch_size, "
      "int cuda_stream) -> ()");
319
  m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
320

321
322
323
324
325
326
327
328
  /*
   * From csrc/kvcacheio
   */
  m.def(
      "transfer_kv_per_layer(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
      "dst_indices, int item_size, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer", torch::kCUDA, &transfer_kv_per_layer);
  m.def(
329
      "transfer_kv_per_layer_pf_lf(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
330
      "dst_indices, int layer_id, int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
331
  m.impl("transfer_kv_per_layer_pf_lf", torch::kCUDA, &transfer_kv_per_layer_pf_lf);
332
  m.def(
333
334
      "transfer_kv_all_layer(Tensor src_k_layers, Tensor dst_k_layers, Tensor src_v_layers, Tensor dst_v_layers, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int num_layers, int block_quota, int "
335
336
337
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer", torch::kCUDA, &transfer_kv_all_layer);
  m.def(
338
339
340
341
      "transfer_kv_all_layer_lf_pf(Tensor src_k_layers, Tensor dst_k, Tensor src_v_layers, Tensor dst_v, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int dst_layout_dim, int num_layers, int block_quota, int "
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_lf_pf", torch::kCUDA, &transfer_kv_all_layer_lf_pf);
342
343
344
345
346
  m.def(
      "transfer_kv_per_layer_mla(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int item_size, int "
      "block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer_mla", torch::kCUDA, &transfer_kv_per_layer_mla);
  m.def(
347
348
      "transfer_kv_per_layer_mla_pf_lf(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int layer_id, "
      "int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
349
  m.impl("transfer_kv_per_layer_mla_pf_lf", torch::kCUDA, &transfer_kv_per_layer_mla_pf_lf);
350
  m.def(
351
352
      "transfer_kv_all_layer_mla(Tensor src_layers, Tensor dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "item_size, int num_layers, int block_quota, int num_warps_per_block) -> ()");
353
354
  m.impl("transfer_kv_all_layer_mla", torch::kCUDA, &transfer_kv_all_layer_mla);
  m.def(
355
356
357
358
359
360
361
      "transfer_kv_all_layer_mla_lf_pf(Tensor src_layers, Tensor dst, Tensor src_indices, Tensor dst_indices, "
      "int item_size, int dst_layout_dim, int num_layers, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_mla_lf_pf", torch::kCUDA, &transfer_kv_all_layer_mla_lf_pf);
  m.def(
      "transfer_kv_direct(Tensor[] src_layers, Tensor[] dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "page_size) -> ()");
  m.impl("transfer_kv_direct", torch::kCUDA, &transfer_kv_direct);
362
363
364
365
366
367
368
369
  m.def(
      "transfer_kv_per_layer_direct_pf_lf(Tensor[] src_ptrs, Tensor[] dst_ptrs, Tensor src_indices, "
      "Tensor dst_indices, int layer_id, int page_size)->() ");
  m.impl("transfer_kv_per_layer_direct_pf_lf", torch::kCUDA, &transfer_kv_per_layer_direct_pf_lf);
  m.def(
      "transfer_kv_all_layer_direct_lf_pf(Tensor[] src_ptrs, Tensor[] dst_ptrs, Tensor src_indices, "
      "Tensor dst_indices, int page_size) ->() ");
  m.impl("transfer_kv_all_layer_direct_lf_pf", torch::kCUDA, &transfer_kv_all_layer_direct_lf_pf);
370

Lianmin Zheng's avatar
Lianmin Zheng committed
371
372
373
374
375
376
  /*
   * From csrc/memory
   */
  m.def("store_kv_cache(Tensor k_cache, Tensor v_cache, Tensor out_loc, Tensor k, Tensor v) -> ()");
  m.impl("store_kv_cache", &store_kv_cache);

377
378
379
  /*
   * From FlashInfer
   */
Yineng Zhang's avatar
Yineng Zhang committed
380
381
  m.def(
      "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
382
383
      "cublas_handle, int cuda_stream) -> ()",
      {at::Tag::needs_fixed_stride_order});
Yineng Zhang's avatar
Yineng Zhang committed
384
  m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
385
386

  m.def(
387
388
      "min_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_min_p_arr, float "
      "min_p_val, bool deterministic, Generator? gen) -> ()");
389
390
  m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

391
  m.def("top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
392
393
  m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);

394
  m.def("top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val) -> ()");
395
396
  m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

397
398
399
400
401
  m.def(
      "top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? "
      "maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
  m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);

402
  m.def(
403
404
      "top_k_top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_top_k_arr, "
      "float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
405
406
  m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

407
408
409
  m.def("top_k_mask_logits(Tensor logits, Tensor mask_logits, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
  m.impl("top_k_mask_logits", torch::kCUDA, &top_k_mask_logits);

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
  /*
   * From Sparse Flash Attention
   */
  m.def(
      "fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor? alibi_slopes, "
      "float p_dropout, float softmax_scale, bool is_causal, "
      "float softcap, bool return_softmax, Generator? gen)"
      "-> Tensor[]");
  m.impl("fwd_sparse", torch::kCUDA, &flash::mha_fwd_sparse);

  m.def(
      "varlen_fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor cu_seqlens_q, "
      "Tensor cu_seqlens_k, Tensor? seqused_k, Tensor? alibi_slopes, "
      "int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, "
      "bool is_causal, float softcap, bool return_softmax, "
      "Generator? gen) -> Tensor[]");
  m.impl("varlen_fwd_sparse", torch::kCUDA, &flash::mha_varlen_fwd_sparse);
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
  // Sparse Attention utils
  m.def(
      "convert_vertical_slash_indexes("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes", torch::kCUDA, &convert_vertical_slash_indexes);

  m.def(
      "convert_vertical_slash_indexes_mergehead("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   Tensor vertical_indices_count, Tensor slash_indices_count, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes_mergehead", torch::kCUDA, &convert_vertical_slash_indexes_mergehead);

454
  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
455
   * From csrc/grammar
456
457
458
   */
  m.def("apply_token_bitmask_inplace_cuda(Tensor logits, Tensor bitmask, Tensor? indices=None) -> ()");
  m.impl("apply_token_bitmask_inplace_cuda", &ApplyTokenBitmaskInplace);
HandH1998's avatar
HandH1998 committed
459
460

  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
461
   * From csrc/gemm (QServe)
HandH1998's avatar
HandH1998 committed
462
463
464
465
466
467
468
469
470
471
   */
  m.def(
      "qserve_w4a8_per_chn_gemm(Tensor _in_feats, Tensor _kernel, Tensor _wscales, Tensor _ascales, Tensor _w_szs, "
      "Tensor _a_ssums, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_chn_gemm", torch::kCUDA, &qserve_w4a8_per_chn_gemm);

  m.def(
      "qserve_w4a8_per_group_gemm(Tensor _in_feats, Tensor _kernel, Tensor _zeros, Tensor _scales_i8, Tensor _wscales, "
      "Tensor _ascales, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_group_gemm", torch::kCUDA, &qserve_w4a8_per_group_gemm);
472

Yi Zhang's avatar
Yi Zhang committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
  /*
   * From csrc/mamba
   */
  m.def(
      "causal_conv1d_update(Tensor! x,"
      "Tensor! conv_state,"
      "Tensor! weight,"
      "Tensor? bias_,"
      "bool silu_activation,"
      "Tensor? cache_seqlens_,"
      "Tensor? conv_state_indices,"
      "int pad_slot_id) -> ()");
  m.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);

  m.def(
      "causal_conv1d_fwd(Tensor! x, Tensor! weight,"
      "Tensor? bias_,"
      "Tensor!? conv_states,"
      "Tensor? query_start_loc,"
      "Tensor? cache_indices,"
      "Tensor? has_initial_state,"
      "bool silu_activation,"
      "int pad_slot_id) -> ()");
  m.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
497
498
}

499
REGISTER_EXTENSION(common_ops)