test_fa3.py 4.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import unittest
from types import SimpleNamespace

import requests
import torch

from sglang.srt.utils import get_device_sm, kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.test_utils import (
    DEFAULT_MLA_MODEL_NAME_FOR_TEST,
    DEFAULT_MODEL_NAME_FOR_TEST,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)

"""
Integration test for python/sglang/srt/layers/attention/flashattention_backend.py
"""
# Change to your own model if testing model is not public.
MODEL_USED_FOR_TEST = DEFAULT_MODEL_NAME_FOR_TEST
MODEL_USED_FOR_TEST_MLA = DEFAULT_MLA_MODEL_NAME_FOR_TEST
# Setting data path to None uses default data path in few_shot_gsm8k eval test.
DATA_PATH = None


@unittest.skipIf(get_device_sm() < 90, "Test requires CUDA SM 90 or higher")
class BaseFlashAttentionTest(unittest.TestCase):
    """Base class for FlashAttention tests to reduce code duplication."""

    model = MODEL_USED_FOR_TEST
    base_url = DEFAULT_URL_FOR_TEST
    accuracy_threshold = 0.62

    @classmethod
    def get_server_args(cls):
        """Return the arguments for the server launch. Override in subclasses."""
        args = [
            "--trust-remote-code",
            "--enable-torch-compile",
            "--attention-backend",
            "fa3",
        ]
        return args

    @classmethod
    def setUpClass(cls):
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=cls.get_server_args(),
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_gsm8k(self):
        args = SimpleNamespace(
            num_shots=5,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
            data_path=DATA_PATH,
        )
        metrics = run_eval_few_shot_gsm8k(args)
        print(metrics)

        # Use the appropriate metric key based on the test class
        metric_key = "accuracy"
        self.assertGreater(metrics[metric_key], self.accuracy_threshold)


class TestFlashAttention3(BaseFlashAttentionTest):
    """Test FlashAttention3 with MLA model and CUDA graph enabled."""

    @classmethod
    def get_server_args(cls):
        args = super().get_server_args()
        args.extend(
            [
                "--cuda-graph-max-bs",
                "2",
            ]
        )
        return args


class TestFlashAttention3DisableCudaGraph(BaseFlashAttentionTest):
    """Test FlashAttention3 with CUDA graph disabled."""

    @classmethod
    def get_server_args(cls):
        args = super().get_server_args()
        args.extend(
            [
                "--disable-cuda-graph",
            ]
        )
        return args


class TestFlashAttention3MLA(BaseFlashAttentionTest):
    """Test FlashAttention3 with MLA."""

    model = MODEL_USED_FOR_TEST_MLA

    @classmethod
    def get_server_args(cls):
        args = super().get_server_args()
        args.extend(
            [
                "--cuda-graph-max-bs",
                "2",
            ]
        )
        return args


class TestFlashAttention3SpeculativeDecode(BaseFlashAttentionTest):
    """Test FlashAttention3 with speculative decode enabled."""

126
    model = "meta-llama/Llama-3.1-8B-Instruct"
127
128
129
130
131
132
133
134
135
136
137

    @classmethod
    def get_server_args(cls):
        args = super().get_server_args()
        args.extend(
            [
                "--cuda-graph-max-bs",
                "2",
                "--speculative-algorithm",
                "EAGLE3",
                "--speculative-draft",
138
                "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                "--speculative-num-steps",
                "3",
                "--speculative-eagle-topk",
                "1",
                "--speculative-num-draft-tokens",
                "3",
                "--dtype",
                "float16",
            ]
        )
        return args

    def test_gsm8k(self):
        """
        Override the test_gsm8k to further test for average speculative accept length.
        """
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=DATA_PATH,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
        metrics = run_eval_few_shot_gsm8k(args)
        print(metrics)

        self.assertGreater(metrics["accuracy"], 0.60)

        server_info = requests.get(self.base_url + "/get_server_info")
        avg_spec_accept_length = server_info.json()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.5)


if __name__ == "__main__":
    unittest.main()