huggingface.rs 9.53 KB
Newer Older
1
use std::collections::HashMap;
2
3

use anyhow::{Error, Result};
4
5
use tokenizers::tokenizer::Tokenizer as HfTokenizer;

6
7
8
9
10
11
use super::{
    chat_template::{
        detect_chat_template_content_format, ChatTemplateContentFormat, ChatTemplateParams,
        ChatTemplateProcessor,
    },
    traits::{Decoder, Encoder, Encoding, SpecialTokens, TokenIdType, Tokenizer as TokenizerTrait},
12
};
13

14
15
16
17
/// HuggingFace tokenizer wrapper
pub struct HuggingFaceTokenizer {
    tokenizer: HfTokenizer,
    special_tokens: SpecialTokens,
18
19
20
    vocab: HashMap<String, TokenIdType>,
    reverse_vocab: HashMap<TokenIdType, String>,
    chat_template: Option<String>,
21
22
    /// Detected chat template content format (computed once at initialization)
    content_format: ChatTemplateContentFormat,
23
24
25
26
27
}

impl HuggingFaceTokenizer {
    /// Create a tokenizer from a HuggingFace tokenizer JSON file
    pub fn from_file(file_path: &str) -> Result<Self> {
28
29
30
31
32
33
        // Try to auto-discover chat template if not explicitly provided
        let path = std::path::Path::new(file_path);
        let chat_template_path = path
            .parent()
            .and_then(crate::tokenizer::factory::discover_chat_template_in_dir);
        Self::from_file_with_chat_template(file_path, chat_template_path.as_deref())
34
35
36
37
38
39
40
    }

    /// Create a tokenizer from a HuggingFace tokenizer JSON file with an optional chat template
    pub fn from_file_with_chat_template(
        file_path: &str,
        chat_template_path: Option<&str>,
    ) -> Result<Self> {
41
42
43
44
45
46
47
48
        let tokenizer = HfTokenizer::from_file(file_path)
            .map_err(|e| Error::msg(format!("Failed to load tokenizer: {}", e)))?;

        // Extract special tokens
        let special_tokens = Self::extract_special_tokens(&tokenizer);

        // Build vocab mappings
        let vocab = tokenizer.get_vocab(false);
49
        let reverse_vocab: HashMap<TokenIdType, String> = vocab
50
51
52
53
            .iter()
            .map(|(token, &id)| (id, token.clone()))
            .collect();

54
55
56
57
58
59
60
61
62
        // Load chat template
        let chat_template = if let Some(template_path) = chat_template_path {
            // Load from specified .jinja file
            Self::load_chat_template_from_file(template_path)?
        } else {
            // Try to load from tokenizer_config.json
            Self::load_chat_template(file_path)
        };

63
64
65
66
67
68
69
        // Detect content format once at initialization
        let content_format = if let Some(ref template) = chat_template {
            detect_chat_template_content_format(template)
        } else {
            ChatTemplateContentFormat::String // Default if no template
        };

70
71
72
73
74
        Ok(HuggingFaceTokenizer {
            tokenizer,
            special_tokens,
            vocab,
            reverse_vocab,
75
            chat_template,
76
            content_format,
77
78
79
80
81
82
83
        })
    }

    /// Create from an existing HuggingFace tokenizer
    pub fn from_tokenizer(tokenizer: HfTokenizer) -> Self {
        let special_tokens = Self::extract_special_tokens(&tokenizer);
        let vocab = tokenizer.get_vocab(false);
84
        let reverse_vocab: HashMap<TokenIdType, String> = vocab
85
86
87
88
89
90
91
92
93
            .iter()
            .map(|(token, &id)| (id, token.clone()))
            .collect();

        HuggingFaceTokenizer {
            tokenizer,
            special_tokens,
            vocab,
            reverse_vocab,
94
            chat_template: None,
95
            content_format: ChatTemplateContentFormat::String, // Default
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        }
    }

    /// Extract special tokens from the tokenizer
    fn extract_special_tokens(tokenizer: &HfTokenizer) -> SpecialTokens {
        // Try to get special tokens from the tokenizer
        // This is a simplified version - actual implementation would need to handle various formats
        let vocab = tokenizer.get_vocab(true);

        let find_token = |patterns: &[&str]| -> Option<String> {
            for pattern in patterns {
                if vocab.contains_key(*pattern) {
                    return Some(pattern.to_string());
                }
            }
            None
        };

        SpecialTokens {
            bos_token: find_token(&["<s>", "<|startoftext|>", "<BOS>", "[CLS]"]),
            eos_token: find_token(&["</s>", "<|endoftext|>", "<EOS>", "[SEP]"]),
            unk_token: find_token(&["<unk>", "<UNK>", "[UNK]"]),
            sep_token: find_token(&["[SEP]", "<sep>", "<SEP>"]),
            pad_token: find_token(&["<pad>", "<PAD>", "[PAD]"]),
            cls_token: find_token(&["[CLS]", "<cls>", "<CLS>"]),
            mask_token: find_token(&["[MASK]", "<mask>", "<MASK>"]),
            additional_special_tokens: vec![],
        }
    }

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    /// Try to load chat template from tokenizer_config.json
    fn load_chat_template(tokenizer_path: &str) -> Option<String> {
        // Try to find tokenizer_config.json in the same directory
        let path = std::path::Path::new(tokenizer_path);
        let dir = path.parent()?;
        let config_path = dir.join("tokenizer_config.json");

        if config_path.exists() {
            if let Ok(template) =
                super::chat_template::load_chat_template_from_config(config_path.to_str()?)
            {
                return template;
            }
        }
        None
    }

143
    /// Load chat template from a file (.jinja or .json containing Jinja)
144
145
146
147
148
149
    fn load_chat_template_from_file(template_path: &str) -> Result<Option<String>> {
        use std::fs;

        let content = fs::read_to_string(template_path)
            .map_err(|e| Error::msg(format!("Failed to read chat template file: {}", e)))?;

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        // Check if it's a JSON file containing a Jinja template
        if template_path.ends_with(".json") {
            // Parse JSON and extract the template string
            let json_value: serde_json::Value = serde_json::from_str(&content)
                .map_err(|e| Error::msg(format!("Failed to parse chat_template.json: {}", e)))?;

            if let Some(template_str) = json_value.as_str() {
                return Ok(Some(template_str.to_string()));
            } else if let Some(obj) = json_value.as_object() {
                if let Some(template_value) = obj.get("chat_template") {
                    if let Some(template_str) = template_value.as_str() {
                        return Ok(Some(template_str.to_string()));
                    }
                }
            }

            return Err(Error::msg(
                "chat_template.json does not contain a valid template",
            ));
        }

        // Otherwise it's a plain .jinja file
172
173
174
175
176
177
178
179
        // Clean up the template (similar to Python implementation)
        let template = content.trim().replace("\\n", "\n");

        Ok(Some(template))
    }

    /// Set or override the chat template
    pub fn set_chat_template(&mut self, template: String) {
180
181
        // Detect format for the new template
        self.content_format = detect_chat_template_content_format(&template);
182
183
184
        self.chat_template = Some(template);
    }

185
186
187
188
189
    /// Get the content format expected by the chat template
    pub fn chat_template_content_format(&self) -> ChatTemplateContentFormat {
        self.content_format
    }

190
    /// Apply chat template if available
191
192
    ///
    /// Takes transformed JSON Values (already transformed based on content format)
193
194
    pub fn apply_chat_template(
        &self,
195
        messages: &[serde_json::Value],
196
        params: ChatTemplateParams,
197
198
    ) -> Result<String> {
        if let Some(ref template) = self.chat_template {
199
200
            let processor = ChatTemplateProcessor::new(template.clone());
            processor.apply_chat_template(messages, params)
201
        } else {
202
203
204
205
206
207
            Err(Error::msg(
                "Cannot use chat template functions because tokenizer.chat_template is not set and no template \
                argument was passed! For information about writing templates and setting the \
                tokenizer.chat_template attribute, please see the documentation at \
                https://huggingface.co/docs/transformers/main/en/chat_templating"
            ))
208
209
        }
    }
210
211
212
213
}

impl Encoder for HuggingFaceTokenizer {
    fn encode(&self, input: &str) -> Result<Encoding> {
214
215
        self.tokenizer
            .encode(input, false)
216
217
            .map_err(|e| Error::msg(format!("Encoding failed: {}", e)))
            .map(|encoding| Encoding::Hf(Box::new(encoding)))
218
219
220
221
222
223
    }

    fn encode_batch(&self, inputs: &[&str]) -> Result<Vec<Encoding>> {
        let encodings = self
            .tokenizer
            .encode_batch(inputs.to_vec(), false)
224
            .map_err(|e| Error::msg(format!("Batch encoding failed: {}", e)))?;
225
226
227
228
229
230
231
232
233

        Ok(encodings
            .into_iter()
            .map(|e| Encoding::Hf(Box::new(e)))
            .collect())
    }
}

impl Decoder for HuggingFaceTokenizer {
234
    fn decode(&self, token_ids: &[TokenIdType], skip_special_tokens: bool) -> Result<String> {
235
236
        self.tokenizer
            .decode(token_ids, skip_special_tokens)
237
            .map_err(|e| Error::msg(format!("Decoding failed: {}", e)))
238
239
240
241
242
243
244
245
246
247
248
249
    }
}

impl TokenizerTrait for HuggingFaceTokenizer {
    fn vocab_size(&self) -> usize {
        self.tokenizer.get_vocab_size(false)
    }

    fn get_special_tokens(&self) -> &SpecialTokens {
        &self.special_tokens
    }

250
    fn token_to_id(&self, token: &str) -> Option<TokenIdType> {
251
252
253
        self.vocab.get(token).copied()
    }

254
    fn id_to_token(&self, id: TokenIdType) -> Option<String> {
255
256
        self.reverse_vocab.get(&id).cloned()
    }
257
258
259
260

    fn as_any(&self) -> &dyn std::any::Any {
        self
    }
261
262
263
264
265
266
267
}

#[cfg(test)]
mod tests {
    // Note: Actual tokenizer tests would require a real tokenizer file
    // These would be integration tests rather than unit tests
}