generate.rs 9.41 KB
Newer Older
1
2
use std::collections::HashMap;

3
4
5
6
use serde::{Deserialize, Serialize};
use serde_json::Value;
use validator::Validate;

7
8
9
10
use super::{
    common::{default_true, GenerationRequest, InputIds},
    sampling_params::SamplingParams,
};
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
use crate::protocols::validated::Normalizable;

// ============================================================================
// SGLang Generate API (native format)
// ============================================================================

#[derive(Clone, Debug, Serialize, Deserialize, Validate)]
#[validate(schema(function = "validate_generate_request"))]
pub struct GenerateRequest {
    /// Text input - SGLang native format
    #[serde(skip_serializing_if = "Option::is_none")]
    pub text: Option<String>,

    /// Input IDs for tokenized input
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_ids: Option<InputIds>,

    /// Input embeddings for direct embedding input
    /// Can be a 2D array (single request) or 3D array (batch of requests)
    /// Placeholder for future use
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_embeds: Option<Value>,

    /// Image input data
    /// Can be an image instance, file name, URL, or base64 encoded string
    /// Supports single images, lists of images, or nested lists for batch processing
    /// Placeholder for future use
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image_data: Option<Value>,

    /// Video input data
    /// Can be a file name, URL, or base64 encoded string
    /// Supports single videos, lists of videos, or nested lists for batch processing
    /// Placeholder for future use
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_data: Option<Value>,

    /// Audio input data
    /// Can be a file name, URL, or base64 encoded string
    /// Supports single audio files, lists of audio, or nested lists for batch processing
    /// Placeholder for future use
    #[serde(skip_serializing_if = "Option::is_none")]
    pub audio_data: Option<Value>,

    /// Sampling parameters (sglang style)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sampling_params: Option<SamplingParams>,

    /// Whether to return logprobs
    #[serde(skip_serializing_if = "Option::is_none")]
    pub return_logprob: Option<bool>,

    /// If return logprobs, the start location in the prompt for returning logprobs.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logprob_start_len: Option<i32>,

    /// If return logprobs, the number of top logprobs to return at each position.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_logprobs_num: Option<i32>,

    /// If return logprobs, the token ids to return logprob for.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub token_ids_logprob: Option<Vec<u32>>,

    /// Whether to detokenize tokens in text in the returned logprobs.
    #[serde(default)]
    pub return_text_in_logprobs: bool,

    /// Whether to stream the response
    #[serde(default)]
    pub stream: bool,

    /// Whether to log metrics for this request (e.g. health_generate calls do not log metrics)
    #[serde(default = "default_true")]
    pub log_metrics: bool,

    /// Return model hidden states
    #[serde(default)]
    pub return_hidden_states: bool,

    /// The modalities of the image data [image, multi-images, video]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub modalities: Option<Vec<String>>,

    /// Session parameters for continual prompting
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_params: Option<HashMap<String, Value>>,

    /// Path to LoRA adapter(s) for model customization
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lora_path: Option<String>,

    /// LoRA adapter ID (if pre-loaded)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lora_id: Option<String>,

    /// Custom logit processor for advanced sampling control. Must be a serialized instance
    /// of `CustomLogitProcessor` in python/sglang/srt/sampling/custom_logit_processor.py
    /// Use the processor's `to_str()` method to generate the serialized string.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub custom_logit_processor: Option<String>,

    /// For disaggregated inference
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bootstrap_host: Option<String>,

    /// For disaggregated inference
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bootstrap_port: Option<i32>,

    /// For disaggregated inference
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bootstrap_room: Option<i32>,

    /// For disaggregated inference
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bootstrap_pair_key: Option<String>,

    /// Data parallel rank routing
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_parallel_rank: Option<i32>,

    /// Background response
    #[serde(default)]
    pub background: bool,

    /// Conversation ID for tracking
    #[serde(skip_serializing_if = "Option::is_none")]
    pub conversation_id: Option<String>,

    /// Priority for the request
    #[serde(skip_serializing_if = "Option::is_none")]
    pub priority: Option<i32>,

    /// Extra key for classifying the request (e.g. cache_salt)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub extra_key: Option<String>,

    /// Whether to disallow logging for this request (e.g. due to ZDR)
    #[serde(default)]
    pub no_logs: bool,

    /// Custom metric labels
    #[serde(skip_serializing_if = "Option::is_none")]
    pub custom_labels: Option<HashMap<String, String>>,

    /// Whether to return bytes for image generation
    #[serde(default)]
    pub return_bytes: bool,

    /// Whether to return entropy
    #[serde(default)]
    pub return_entropy: bool,

    /// Request ID for tracking (inherited from BaseReq in Python)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub rid: Option<String>,
}

impl Normalizable for GenerateRequest {
    // Use default no-op implementation - no normalization needed for GenerateRequest
}

/// Validation function for GenerateRequest - ensure exactly one input type is provided
fn validate_generate_request(req: &GenerateRequest) -> Result<(), validator::ValidationError> {
    // Exactly one of text or input_ids must be provided
    // Note: input_embeds not yet supported in Rust implementation
    let has_text = req.text.is_some();
    let has_input_ids = req.input_ids.is_some();

    let count = [has_text, has_input_ids].iter().filter(|&&x| x).count();

    if count == 0 {
        return Err(validator::ValidationError::new(
            "Either text or input_ids should be provided.",
        ));
    }

    if count > 1 {
        return Err(validator::ValidationError::new(
            "Either text or input_ids should be provided.",
        ));
    }

    Ok(())
}

impl GenerationRequest for GenerateRequest {
    fn is_stream(&self) -> bool {
        self.stream
    }

    fn get_model(&self) -> Option<&str> {
        // Generate requests typically don't have a model field
        None
    }

    fn extract_text_for_routing(&self) -> String {
        // Check fields in priority order: text, input_ids
        if let Some(ref text) = self.text {
            return text.clone();
        }

        if let Some(ref input_ids) = self.input_ids {
            return match input_ids {
                InputIds::Single(ids) => ids
                    .iter()
                    .map(|&id| id.to_string())
                    .collect::<Vec<String>>()
                    .join(" "),
                InputIds::Batch(batches) => batches
                    .iter()
                    .flat_map(|batch| batch.iter().map(|&id| id.to_string()))
                    .collect::<Vec<String>>()
                    .join(" "),
            };
        }

        // No text input found
        String::new()
    }
}

// ============================================================================
// SGLang Generate Response Types
// ============================================================================

/// SGLang generate response (single completion or array for n>1)
///
/// Format for n=1:
/// ```json
/// {
///   "text": "...",
///   "output_ids": [...],
///   "meta_info": { ... }
/// }
/// ```
///
/// Format for n>1:
/// ```json
/// [
///   {"text": "...", "output_ids": [...], "meta_info": {...}},
///   {"text": "...", "output_ids": [...], "meta_info": {...}}
/// ]
/// ```
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct GenerateResponse {
    pub text: String,
    pub output_ids: Vec<u32>,
    pub meta_info: GenerateMetaInfo,
}

/// Metadata for a single generate completion
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct GenerateMetaInfo {
    pub id: String,
    pub finish_reason: GenerateFinishReason,
    pub prompt_tokens: u32,
    pub weight_version: String,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_token_logprobs: Option<Vec<Vec<Option<f64>>>>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub output_token_logprobs: Option<Vec<Vec<Option<f64>>>>,
    pub completion_tokens: u32,
    pub cached_tokens: u32,
    pub e2e_latency: f64,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub matched_stop: Option<Value>,
}

/// Finish reason for generate endpoint
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "type", rename_all = "lowercase")]
pub enum GenerateFinishReason {
    Length {
        length: u32,
    },
    Stop,
    #[serde(untagged)]
    Other(Value),
}