bench_sglang.py 2.54 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import json
import time

import numpy as np
import sglang as sgl
from sglang.test.test_utils import add_common_sglang_args_and_parse, select_sglang_backend
from sglang.utils import read_jsonl, dump_state_text


@sgl.function
def multi_document_qa(s, docs, question):
    s += sgl.user_begin()
    s += "Pleaes answer a question according to given documents.\n"
    s += "Question:" + question + "Documents begin.\n"

    forks = s.fork(len(docs))
    forks += lambda i: docs[i]
    forks.join("concate_and_append")

    s += "\nDocuments end."
    s += ("\n\nBased on the above documents, please answer this question:\n" + question + "\nAnswer in three words or fewer.")
    s += sgl.user_end()
    s += sgl.assistant(sgl.gen("answer", max_tokens=16))


def main(args):
    lines = read_jsonl(args.data_path)
    l = lines[0]
    arguments = []
    labels = []
    for i in range(len(l["questions"][:args.num_questions])):
        arguments.append({
            "docs": l["documents"][:10],
            "question": l["questions"][i],
        })
        labels.append(l["answers"][i])

    # Select backend
    backend = select_sglang_backend(args)
    sgl.set_default_backend(backend)

    # Run requests
    tic = time.time()
    states = multi_document_qa.run_batch(
Liangsheng Yin's avatar
Liangsheng Yin committed
46
        arguments, temperature=0, num_threads=args.parallel, progress_bar=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    latency = time.time() - tic

    # Compute accuracy 
    print([s["answer"] for s in states])
    correct = 0
    for s, label in zip(states, labels):
        answer = s["answer"].lower()
        if all(x in answer for x in label.lower().split(" ")):
            correct += 1
    accuracy = correct / len(labels)
    print(f"Accuracy: {accuracy:.3f}")
    print(f"Latency: {latency:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "multi_document_qa",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_questions,
            "accuracy": accuracy,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
            }
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="questions.jsonl")
    parser.add_argument("--num-questions", type=int, default=100)
    args = add_common_sglang_args_and_parse(parser)
    main(args)