embedding_model.ipynb 16.1 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
7
8
9
10
11
12
    "# Embedding Model\n",
    "\n",
    "SGLang supports embedding models in the same way as completion models. Here are some example models:\n",
    "\n",
    "- [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)\n",
    "- [Alibaba-NLP/gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)\n"
Chayenne's avatar
Chayenne committed
13
14
15
16
17
18
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
19
20
21
22
23
    "## Launch A Server\n",
    "\n",
    "The following code is equivalent to running this in the shell:\n",
    "```bash\n",
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
24
    "    --port 30010 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
25
26
27
    "```\n",
    "\n",
    "Remember to add `--is-embedding` to the command."
Chayenne's avatar
Chayenne committed
28
29
30
31
   ]
  },
  {
   "cell_type": "code",
32
   "execution_count": 1,
Chayenne's avatar
Chayenne committed
33
34
35
36
37
38
39
40
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:47:32.337369Z",
     "iopub.status.busy": "2024-11-01T02:47:32.337032Z",
     "iopub.status.idle": "2024-11-01T02:47:59.540926Z",
     "shell.execute_reply": "2024-11-01T02:47:59.539861Z"
    }
   },
Chayenne's avatar
Chayenne committed
41
42
43
44
45
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
46
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
Chayenne's avatar
Chayenne committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:37] server_args=ServerArgs(model_path='Alibaba-NLP/gte-Qwen2-7B-instruct', tokenizer_path='Alibaba-NLP/gte-Qwen2-7B-instruct', tokenizer_mode='auto', skip_tokenizer_init=False, load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization=None, context_length=None, device='cuda', served_model_name='Alibaba-NLP/gte-Qwen2-7B-instruct', chat_template=None, is_embedding=True, host='0.0.0.0', port=30010, mem_fraction_static=0.88, max_running_requests=None, max_total_tokens=None, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='lpm', schedule_conservativeness=1.0, tp_size=1, stream_interval=1, random_seed=314021918, constrained_json_whitespace_pattern=None, decode_log_interval=40, log_level='info', log_level_http=None, log_requests=False, show_time_cost=False, api_key=None, file_storage_pth='SGLang_storage', enable_cache_report=False, watchdog_timeout=600, dp_size=1, load_balance_method='round_robin', dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, lora_paths=None, max_loras_per_batch=8, attention_backend='flashinfer', sampling_backend='flashinfer', grammar_backend='outlines', disable_flashinfer=False, disable_flashinfer_sampling=False, disable_radix_cache=False, disable_regex_jump_forward=False, disable_cuda_graph=False, disable_cuda_graph_padding=False, disable_disk_cache=False, disable_custom_all_reduce=False, disable_mla=False, disable_penalizer=False, disable_nan_detection=False, enable_overlap_schedule=False, enable_mixed_chunk=False, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=160, torchao_config='', enable_p2p_check=False, triton_attention_reduce_in_fp32=False, num_continuous_decode_steps=1)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
61
62
63
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
      "  warnings.warn(\n",
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
Chayenne's avatar
Chayenne committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:43 TP0] Init torch distributed begin.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:44 TP0] Load weight begin. avail mem=47.27 GB\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:44 TP0] lm_eval is not installed, GPTQ may not be usable\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO 10-31 19:47:45 weight_utils.py:243] Using model weights format ['*.safetensors']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:   0% Completed | 0/7 [00:00<?, ?it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  14% Completed | 1/7 [00:00<00:03,  1.96it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  29% Completed | 2/7 [00:01<00:03,  1.39it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  43% Completed | 3/7 [00:02<00:03,  1.13it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  57% Completed | 4/7 [00:03<00:02,  1.00it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  71% Completed | 5/7 [00:04<00:02,  1.05s/it]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards:  86% Completed | 6/7 [00:05<00:01,  1.09s/it]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\r",
      "Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:07<00:00,  1.11s/it]\n",
      "\r",
      "Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:07<00:00,  1.01s/it]\n",
159
      "\n",
Chayenne's avatar
Chayenne committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
      "[2024-10-31 19:47:53 TP0] Load weight end. type=Qwen2ForCausalLM, dtype=torch.float16, avail mem=32.91 GB\n",
      "[2024-10-31 19:47:53 TP0] Memory pool end. avail mem=4.56 GB\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:53 TP0] max_total_num_tokens=509971, max_prefill_tokens=16384, max_running_requests=2049, context_len=131072\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:54] INFO:     Started server process [1552642]\n",
      "[2024-10-31 19:47:54] INFO:     Waiting for application startup.\n",
      "[2024-10-31 19:47:54] INFO:     Application startup complete.\n",
      "[2024-10-31 19:47:54] INFO:     Uvicorn running on http://0.0.0.0:30010 (Press CTRL+C to quit)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:54] INFO:     127.0.0.1:47776 - \"GET /v1/models HTTP/1.1\" 200 OK\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:55] INFO:     127.0.0.1:50344 - \"GET /get_model_info HTTP/1.1\" 200 OK\n",
      "[2024-10-31 19:47:55 TP0] Prefill batch. #new-seq: 1, #new-token: 6, #cached-token: 0, cache hit rate: 0.00%, token usage: 0.00, #running-req: 0, #queue-req: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-10-31 19:47:55] INFO:     127.0.0.1:50352 - \"POST /encode HTTP/1.1\" 200 OK\n",
      "[2024-10-31 19:47:55] The server is fired up and ready to roll!\n"
202
203
204
205
206
     ]
    },
    {
     "data": {
      "text/html": [
Chayenne's avatar
Chayenne committed
207
       "<strong style='color: #00008B;'><br><br>                    NOTE: Typically, the server runs in a separate terminal.<br>                    In this notebook, we run the server and notebook code together, so their outputs are combined.<br>                    To improve clarity, the server logs are displayed in the original black color, while the notebook outputs are highlighted in blue.<br>                    </strong>"
208
209
210
211
212
213
214
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
215
216
217
    }
   ],
   "source": [
218
219
220
221
222
223
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
224
    "\n",
Chayenne's avatar
Chayenne committed
225
226
    "embedding_process = execute_shell_command(\n",
    "    \"\"\"\n",
227
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
228
    "    --port 30010 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
229
230
    "\"\"\"\n",
    ")\n",
Chayenne's avatar
Chayenne committed
231
    "\n",
232
    "wait_for_server(\"http://localhost:30010\")"
Chayenne's avatar
Chayenne committed
233
234
235
236
237
238
239
240
241
242
243
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use Curl"
   ]
  },
  {
   "cell_type": "code",
244
   "execution_count": 2,
Chayenne's avatar
Chayenne committed
245
246
247
248
249
250
251
252
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:47:59.543958Z",
     "iopub.status.busy": "2024-11-01T02:47:59.543670Z",
     "iopub.status.idle": "2024-11-01T02:47:59.591699Z",
     "shell.execute_reply": "2024-11-01T02:47:59.590809Z"
    }
   },
Chayenne's avatar
Chayenne committed
253
254
255
256
257
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Chayenne's avatar
Chayenne committed
258
259
      "[2024-10-31 19:47:59 TP0] Prefill batch. #new-seq: 1, #new-token: 4, #cached-token: 0, cache hit rate: 0.00%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-31 19:47:59] INFO:     127.0.0.1:50358 - \"POST /v1/embeddings HTTP/1.1\" 200 OK\n"
260
261
262
263
264
265
266
267
268
269
270
271
272
     ]
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Text embedding (first 10): [0.0083160400390625, 0.0006804466247558594, -0.00809478759765625, -0.0006995201110839844, 0.0143890380859375, -0.0090179443359375, 0.01238250732421875, 0.00209808349609375, 0.0062103271484375, -0.003047943115234375]</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
273
274
275
    }
   ],
   "source": [
Chayenne's avatar
Chayenne committed
276
277
278
    "import subprocess, json\n",
    "\n",
    "text = \"Once upon a time\"\n",
Chayenne's avatar
Chayenne committed
279
    "\n",
Chayenne's avatar
Chayenne committed
280
    "curl_text = f\"\"\"curl -s http://localhost:30010/v1/embeddings \\\n",
Chayenne's avatar
Chayenne committed
281
282
    "  -H \"Content-Type: application/json\" \\\n",
    "  -H \"Authorization: Bearer None\" \\\n",
Chayenne's avatar
Chayenne committed
283
284
285
286
287
288
    "  -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": \"{text}\"}}'\"\"\"\n",
    "\n",
    "text_embedding = json.loads(subprocess.check_output(curl_text, shell=True))[\"data\"][0][\n",
    "    \"embedding\"\n",
    "]\n",
    "\n",
289
    "print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
Chayenne's avatar
Chayenne committed
290
291
292
293
294
295
296
297
298
299
300
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Compatible API"
   ]
  },
  {
   "cell_type": "code",
301
   "execution_count": 3,
Chayenne's avatar
Chayenne committed
302
303
304
305
306
307
308
309
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:47:59.594229Z",
     "iopub.status.busy": "2024-11-01T02:47:59.594049Z",
     "iopub.status.idle": "2024-11-01T02:48:00.006233Z",
     "shell.execute_reply": "2024-11-01T02:48:00.005255Z"
    }
   },
Chayenne's avatar
Chayenne committed
310
311
312
313
314
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Chayenne's avatar
Chayenne committed
315
316
      "[2024-10-31 19:47:59 TP0] Prefill batch. #new-seq: 1, #new-token: 1, #cached-token: 3, cache hit rate: 21.43%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-31 19:47:59] INFO:     127.0.0.1:50362 - \"POST /v1/embeddings HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
317
     ]
318
319
320
321
322
323
324
325
326
327
328
329
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Text embedding (first 10): [0.00829315185546875, 0.0007004737854003906, -0.00809478759765625, -0.0006799697875976562, 0.01438140869140625, -0.00897979736328125, 0.0123748779296875, 0.0020923614501953125, 0.006195068359375, -0.0030498504638671875]</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
330
331
332
333
334
    }
   ],
   "source": [
    "import openai\n",
    "\n",
Chayenne's avatar
Chayenne committed
335
    "client = openai.Client(base_url=\"http://127.0.0.1:30010/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
336
337
338
339
    "\n",
    "# Text embedding example\n",
    "response = client.embeddings.create(\n",
    "    model=\"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
Chayenne's avatar
Chayenne committed
340
    "    input=text,\n",
Chayenne's avatar
Chayenne committed
341
342
343
    ")\n",
    "\n",
    "embedding = response.data[0].embedding[:10]\n",
344
    "print_highlight(f\"Text embedding (first 10): {embedding}\")"
Chayenne's avatar
Chayenne committed
345
346
347
348
349
350
351
352
353
354
355
356
357
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using Input IDs\n",
    "\n",
    "SGLang also supports `input_ids` as input to get the embedding."
   ]
  },
  {
   "cell_type": "code",
358
   "execution_count": 4,
Chayenne's avatar
Chayenne committed
359
360
361
362
363
364
365
366
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:48:00.008858Z",
     "iopub.status.busy": "2024-11-01T02:48:00.008689Z",
     "iopub.status.idle": "2024-11-01T02:48:01.872542Z",
     "shell.execute_reply": "2024-11-01T02:48:01.871573Z"
    }
   },
Chayenne's avatar
Chayenne committed
367
   "outputs": [
368
369
370
371
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
Chayenne's avatar
Chayenne committed
372
      "/home/chenyang/miniconda3/envs/AlphaMeemory/lib/python3.11/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n",
373
374
375
      "  warnings.warn(\n"
     ]
    },
Chayenne's avatar
Chayenne committed
376
377
378
379
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Chayenne's avatar
Chayenne committed
380
381
      "[2024-10-31 19:48:01 TP0] Prefill batch. #new-seq: 1, #new-token: 1, #cached-token: 3, cache hit rate: 33.33%, token usage: 0.00, #running-req: 0, #queue-req: 0\n",
      "[2024-10-31 19:48:01] INFO:     127.0.0.1:50366 - \"POST /v1/embeddings HTTP/1.1\" 200 OK\n"
Chayenne's avatar
Chayenne committed
382
     ]
383
384
385
386
387
388
389
390
391
392
393
394
    },
    {
     "data": {
      "text/html": [
       "<strong style='color: #00008B;'>Input IDs embedding (first 10): [0.00829315185546875, 0.0007004737854003906, -0.00809478759765625, -0.0006799697875976562, 0.01438140869140625, -0.00897979736328125, 0.0123748779296875, 0.0020923614501953125, 0.006195068359375, -0.0030498504638671875]</strong>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
Chayenne's avatar
Chayenne committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    }
   ],
   "source": [
    "import json\n",
    "import os\n",
    "from transformers import AutoTokenizer\n",
    "\n",
    "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Alibaba-NLP/gte-Qwen2-7B-instruct\")\n",
    "input_ids = tokenizer.encode(text)\n",
    "\n",
    "curl_ids = f\"\"\"curl -s http://localhost:30010/v1/embeddings \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -H \"Authorization: Bearer None\" \\\n",
    "  -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": {json.dumps(input_ids)}}}'\"\"\"\n",
    "\n",
    "input_ids_embedding = json.loads(subprocess.check_output(curl_ids, shell=True))[\"data\"][\n",
    "    0\n",
    "][\"embedding\"]\n",
    "\n",
416
    "print_highlight(f\"Input IDs embedding (first 10): {input_ids_embedding[:10]}\")"
Chayenne's avatar
Chayenne committed
417
   ]
418
419
420
  },
  {
   "cell_type": "code",
421
   "execution_count": 5,
Chayenne's avatar
Chayenne committed
422
423
424
425
426
427
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-01T02:48:01.875204Z",
     "iopub.status.busy": "2024-11-01T02:48:01.874915Z",
     "iopub.status.idle": "2024-11-01T02:48:02.193734Z",
     "shell.execute_reply": "2024-11-01T02:48:02.192158Z"
428
    }
Chayenne's avatar
Chayenne committed
429
430
   },
   "outputs": [],
431
432
433
   "source": [
    "terminate_process(embedding_process)"
   ]
Chayenne's avatar
Chayenne committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "AlphaMeemory",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}