test_causal_conv1d.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Adapted from https://github.com/vllm-project/vllm/blob/main/tests/kernels/mamba/test_causal_conv1d.py


from typing import Optional

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange

from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
    PAD_SLOT_ID,
    causal_conv1d_fn,
    causal_conv1d_update,
)


def causal_conv1d_ref(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    initial_states: Optional[torch.Tensor] = None,
    return_final_states: bool = False,
    final_states_out: Optional[torch.Tensor] = None,
    activation: Optional[str] = "silu",
):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    initial_states: (batch, dim, width - 1)
    final_states_out: (batch, dim, width - 1)

    out: (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError("activation must be None, silu, or swish")
    dtype_in = x.dtype
    x = x.to(weight.dtype)
    seqlen = x.shape[-1]
    dim, width = weight.shape
    if initial_states is None:
        out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim)
    else:
        x = torch.cat([initial_states, x], dim=-1)
        out = F.conv1d(x, weight.unsqueeze(1), bias, padding=0, groups=dim)
    out = out[..., :seqlen]
    if return_final_states:
        final_states = F.pad(x, (width - 1 - x.shape[-1], 0)).to(
            dtype_in
        )  # (batch, dim, width - 1)
        if final_states_out is not None:
            final_states_out.copy_(final_states)
        else:
            final_states_out = final_states
    out = (out if activation is None else F.silu(out)).to(dtype=dtype_in)
    return (out, None) if not return_final_states else (out, final_states_out)


def causal_conv1d_update_ref(
    x, conv_state, weight, bias=None, activation=None, cache_seqlens=None
):
    """
    x: (batch, dim) or (batch, dim, seqlen)
    conv_state: (batch, dim, state_len), where state_len >= width - 1
    weight: (dim, width)
    bias: (dim,)
    cache_seqlens: (batch,), dtype int32.
        If not None, the conv_state is treated as a circular buffer.
        The conv_state will be updated by copying x to the
        conv_state starting at the index
        @cache_seqlens % state_len before performing the convolution.

    out: (batch, dim) or (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError("activation must be None, silu, or swish")
    dtype_in = x.dtype
    unsqueeze = x.dim() == 2
    if unsqueeze:
        x = x.unsqueeze(-1)
    batch, dim, seqlen = x.shape
    width = weight.shape[1]
    state_len = conv_state.shape[-1]
    assert conv_state.shape == (batch, dim, state_len)
    assert weight.shape == (dim, width)
    if cache_seqlens is None:
        x_new = torch.cat([conv_state, x], dim=-1).to(
            weight.dtype
        )  # (batch, dim, state_len + seqlen)
        conv_state.copy_(x_new[:, :, -state_len:])
    else:
        width_idx = torch.arange(
            -(width - 1), 0, dtype=torch.long, device=x.device
        ).unsqueeze(0) + cache_seqlens.unsqueeze(1)
        width_idx = (
            torch.remainder(width_idx, state_len).unsqueeze(1).expand(-1, dim, -1)
        )
        x_new = torch.cat([conv_state.gather(2, width_idx), x], dim=-1).to(weight.dtype)
        copy_idx = torch.arange(seqlen, dtype=torch.long, device=x.device).unsqueeze(
            0
        ) + cache_seqlens.unsqueeze(1)
        copy_idx = torch.remainder(copy_idx, state_len).unsqueeze(1).expand(-1, dim, -1)
        conv_state.scatter_(2, copy_idx, x)
    out = F.conv1d(x_new, weight.unsqueeze(1), bias, padding=0, groups=dim)[
        :, :, -seqlen:
    ]
    if unsqueeze:
        out = out.squeeze(-1)
    return (out if activation is None else F.silu(out)).to(dtype=dtype_in)


@pytest.mark.parametrize("itype", [torch.bfloat16, torch.float])
@pytest.mark.parametrize("silu_activation", [True])
@pytest.mark.parametrize("has_bias", [True])
def causal_conv1d_opcheck_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    cu_seq_len: Optional[torch.Tensor] = None,
    cache_indices: Optional[torch.Tensor] = None,
    has_initial_state: Optional[torch.Tensor] = None,
    conv_states: Optional[torch.Tensor] = None,
    activation: Optional[str] = "silu",
    pad_slot_id: int = PAD_SLOT_ID,
):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    seq_idx: (batch, seqlen)
    initial_states: (batch, dim, width - 1)
    final_states_out: (batch, dim, width - 1), to be written to
    activation: either None or "silu" or "swish"

    out: (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError("activation must be None, silu, or swish")
    if x.stride(-1) != 1:
        x = x.contiguous()
    bias = bias.contiguous() if bias is not None else None


@pytest.mark.parametrize("itype", [torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize("seqlen", [1])
@pytest.mark.parametrize("width", [4])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation, itype):
    if not torch.cuda.is_available():
        pytest.skip("CUDA device not available")

    device = "cuda"
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2
    # set seed
    torch.manual_seed(0)
    batch = 2
    x = torch.randn(batch, dim, seqlen, device=device, dtype=itype)
    x_ref = x.clone()
    conv_state = torch.randn(batch, dim, width - 1, device=device, dtype=itype)

    weight = torch.randn(dim, width, device=device, dtype=itype)
    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    conv_state_ref = conv_state.detach().clone()
    activation = None if not silu_activation else "silu"
    out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation)
    out_ref = causal_conv1d_update_ref(
        x_ref, conv_state_ref, weight, bias, activation=activation
    )

    assert torch.equal(conv_state, conv_state_ref)
    assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)


@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize("seqlen", [1, 3])
@pytest.mark.parametrize("width", [3, 4])
@pytest.mark.parametrize("dim", [2048 + 16, 4096])
# tests correctness in case subset of the sequences are padded
@pytest.mark.parametrize("with_padding", [True, False])
@pytest.mark.parametrize("batch_size", [3])
def test_causal_conv1d_update_with_batch_gather(
    batch_size, with_padding, dim, width, seqlen, has_bias, silu_activation, itype
):
    if not torch.cuda.is_available():
        pytest.skip("CUDA device not available")

    device = "cuda"
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2

    # set seed
    torch.manual_seed(0)

    padding = 5 if with_padding else 0
    padded_batch_size = batch_size + padding
    # total_entries = number of cache line
    total_entries = 10 * batch_size

    # x will be (batch, dim, seqlen) with contiguous along dim-axis
    x = torch.randn(
        padded_batch_size, seqlen, dim, device=device, dtype=itype
    ).transpose(1, 2)

    x_ref = x.clone()

    conv_state_indices = torch.randperm(total_entries)[:batch_size].to(
        dtype=torch.int32, device=device
    )
    unused_states_bool = torch.ones(total_entries, dtype=torch.bool, device=device)
    unused_states_bool[conv_state_indices] = False
    padded_state_indices = torch.concat(
        [
            conv_state_indices,
            torch.as_tensor([PAD_SLOT_ID] * padding, dtype=torch.int32, device=device),
        ],
        dim=0,
    )

    # conv_state will be (cache_lines, dim, state_len)
    # with contiguous along dim-axis
    conv_state = torch.randn(
        total_entries, width - 1, dim, device=device, dtype=itype
    ).transpose(1, 2)

    conv_state_for_padding_test = conv_state.clone()

    weight = torch.randn(dim, width, device=device, dtype=itype)
    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    conv_state_ref = conv_state[conv_state_indices, :].detach().clone()
    activation = None if not silu_activation else "silu"

    out = causal_conv1d_update(
        x,
        conv_state,
        weight,
        bias,
        activation=activation,
        conv_state_indices=padded_state_indices,
        pad_slot_id=PAD_SLOT_ID,
    )
    out_ref = causal_conv1d_update_ref(
        x_ref[:batch_size], conv_state_ref, weight, bias, activation=activation
    )

    assert torch.equal(conv_state[conv_state_indices, :], conv_state_ref)
    assert torch.equal(
        conv_state[unused_states_bool], conv_state_for_padding_test[unused_states_bool]
    )
    assert torch.allclose(out[:batch_size], out_ref, rtol=rtol, atol=atol)


@pytest.mark.parametrize("itype", [torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [True])
@pytest.mark.parametrize("has_bias", [True])
@pytest.mark.parametrize("width", [4])
@pytest.mark.parametrize("seqlen", [8, 30, 249, 2049, 4096])
@pytest.mark.parametrize("dim", [64, 4096])
@pytest.mark.parametrize("with_padding", [True, False])
@pytest.mark.parametrize("batch", [4, 10])
def test_causal_conv1d_varlen(
    batch, with_padding, dim, seqlen, width, has_bias, silu_activation, itype
):
    if not torch.cuda.is_available():
        pytest.skip("CUDA device not available")

    device = "cuda"
    torch.cuda.empty_cache()
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2
    # set seed
    torch.manual_seed(0)
    seqlens = []
    batch_size = batch
    padding = 3 if with_padding else 0
    padded_batch_size = batch_size + padding
    nsplits = padded_batch_size - 1

    eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values

    seqlens.append(
        torch.diff(
            torch.cat([torch.tensor([-1]), eos_pos, torch.tensor([seqlen - 1])])
        ).tolist()
    )
    assert sum(seqlens[-1]) == seqlen
    assert all(s > 0 for s in seqlens[-1])

    total_entries = batch_size * 10
    cumsum = torch.cumsum(torch.tensor(seqlens[0]), dim=0).to(torch.int32)
    cumsum = torch.concat([torch.tensor([0], dtype=torch.int32), cumsum], dim=0)
    x = rearrange(
        torch.randn(1, seqlen, 4096 + dim + 64, device=device, dtype=itype),
        "b s d -> b d s",
    )[:, 4096 : 4096 + dim, :]

    weight = torch.randn(dim, width, device=device, dtype=itype)

    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    x_ref = x.clone()
    weight_ref = weight.clone()
    bias_ref = bias.clone() if bias is not None else None
    activation = None if not silu_activation else "silu"
    final_states = torch.randn(
        total_entries, width - 1, dim, device=x.device, dtype=x.dtype
    ).transpose(1, 2)
    final_states_ref = final_states.clone()
    has_initial_states = torch.randint(
        0, 2, (cumsum.shape[0] - 1,), dtype=torch.bool, device=x.device
    )
    state_indices = torch.randperm(total_entries, dtype=torch.int32, device=x.device)[
        :batch_size
    ]
    padded_state_indices = torch.concat(
        [
            state_indices,
            torch.as_tensor([PAD_SLOT_ID] * padding, dtype=torch.int32, device=device),
        ],
        dim=-1,
    )
    out = causal_conv1d_fn(
        x.squeeze(0),
        weight,
        bias=bias,
        conv_states=final_states,
        query_start_loc=cumsum.cuda(),
        seq_lens_cpu=torch.tensor(seqlens[0]),
        cache_indices=padded_state_indices,
        has_initial_state=has_initial_states,
        activation=activation,
        pad_slot_id=PAD_SLOT_ID,
    )

    out_ref = []
    out_ref_b = []

    splits = [torch.split(var, seqlens[0], dim=-1) for var in (x_ref)]
    for i in range(len(seqlens[0])):
        x_s = [v[i].unsqueeze(0) for v in splits][0]
        if padded_state_indices[i] == PAD_SLOT_ID:
            continue
        out_ref_b.append(
            causal_conv1d_ref(
                x_s,
                weight_ref,
                bias_ref,
                activation=activation,
                return_final_states=True,
                final_states_out=final_states_ref[padded_state_indices[i]].unsqueeze(0),
                initial_states=(
                    final_states_ref[padded_state_indices[i]].unsqueeze(0)
                    if has_initial_states[i]
                    else None
                ),
            )
        )
    out_ref.append(torch.cat([t[0] for t in out_ref_b], dim=2))
    out_ref_tensor = torch.cat(out_ref, dim=0)

    assert torch.allclose(
        final_states[state_indices],
        final_states_ref[state_indices],
        rtol=rtol,
        atol=atol,
    )
    unpadded_out = out[:, : out_ref_tensor.shape[-1]]
    assert torch.allclose(unpadded_out, out_ref_tensor, rtol=rtol, atol=atol)