test_logprobs.py 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Logprobs Accuracy Test for SGLang

======================
With deterministic/batch invariant kernels, we can ensure that SGLang produces exactly the same
logprobs results for identical inputs. However, logprobs are highly sensitive to GPU hardware,
kernels, torch versions, and other factors, so we cannot maintain a unified logprobs baseline
across different machines.

This test is designed to be run locally by contributors to verify logprobs accuracy
before making changes to related code.
When submitting changes that affect logprobs computation, please:
1. Generate baseline
2. Run test
3. Submit results

We really appreciate your effort and contribution to SGLang!

======================
What does this test do?
This test fetches 1000 samples from the ShareGPT dataset, generates logprobs for each sample,
and saves them as a baseline. Then, by running the test mode, it validates the accuracy of
logprobs by comparing them against the baseline.

This test ensures that:
- the boundary of log probs requests are correct, eg, the index for tokens that required log probs are strictly followed
- logprobs remain invariant between test runs, and also before and after your code changes;

======================
Usage

Step 1: Generate Baseline (Before Code Changes)
```bash
python test/srt/test_logprobs.py gen
```

Step 2: Test Against Baseline (After Code Changes)
```bash
python test/srt/test_logprobs.py test
```
This tests your changes against the locally generated baseline from Step 1.
The test passes if the maximum and mean differences are within the tolerance thresholds.
======================
"""

import argparse
import json
48
49
50
51
52
53
54
55
import os
import pickle
import random
import unittest

import numpy as np
import requests
import torch
56
from transformers import AutoTokenizer
57
58

import sglang as sgl
59
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST
60

61
# Configuration
62
DENSE_MODEL_NAME = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
63
64
65
66
67
68
69
SHAREGPT_URL = (
    "https://huggingface.co/datasets/anon8231489123/"
    "ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
)

# Hardware-specific configuration
if torch.version.cuda is not None:
70
    print("Running on NVIDIA CUDA GPU")
71
72
    DENSE_TOLERANCE_MAX_DIFF = 1e-5
    DENSE_TOLERANCE_MEAN_DIFF = 1e-5
73
74
else:
    print("No GPU backend (CPU only)")
75
    raise ValueError("No GPU backend (CPU only)")
76
77
78
79
80
81

# Common configuration
TOP_K = 20
NUM_SAMPLES = 1000
LOGPROB_SAMPLE_RATIO = 0.5
TEMPERATURE = 1.0
82
83
84
85
86
87
MAX_LEN = 20000

# Default output files
DEFAULT_BASELINE_PKL = "sglang_baseline_local.pkl"
DEFAULT_META_JSON = "baseline_meta_preview.json"

88
89
90
91
92
93
94
95
96
97
# Default engine configuration
DEFAULT_ENGINE_CONFIG = {
    "model_path": DENSE_MODEL_NAME,
    "random_seed": 42,
    "skip_tokenizer_init": True,
    "mem_fraction_static": 0.8,
    "enable_deterministic_inference": True,
    "attention_backend": "flashinfer",
}

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

def generate_baseline(
    baseline_file=DEFAULT_BASELINE_PKL,
    meta_file=DEFAULT_META_JSON,
    num_samples=NUM_SAMPLES,
):
    """Generate a local baseline for logprobs testing.

    Args:
        baseline_file: Path to save the baseline pickle file
        meta_file: Path to save the metadata preview JSON file
        num_samples: Number of samples to generate
    """
    print(f"SGLang version: {sgl.__version__}")
    print("Downloading ShareGPT dataset...")

    # Download ShareGPT dataset
    try:
        response = requests.get(SHAREGPT_URL, timeout=30)
        response.raise_for_status()
        data = response.json()
        print(f"Dataset size: {len(data)}")
    except requests.exceptions.RequestException as e:
        raise Exception(f"Failed to download ShareGPT dataset: {e}") from e

    # Filter and prepare texts
    texts = []
    for s in data:
        if "conversations" in s and len(s["conversations"]) > 0:
            try:
                text = s["conversations"][0]["value"]
                if isinstance(text, str) and len(text) <= MAX_LEN and len(text) >= 5500:
                    texts.append(text)
                    if len(texts) >= num_samples * 40:  # Get more samples for filtering
                        break
            except (KeyError, IndexError, TypeError) as e:
                print(f"Warning: Skipping invalid conversation data: {e}")
                continue

    if not texts:
        raise ValueError("No valid texts found in the dataset")

    print(f"Loading tokenizer for {DENSE_MODEL_NAME}...")
    tokenizer = AutoTokenizer.from_pretrained(DENSE_MODEL_NAME, use_fast=True)

    rng = np.random.default_rng(42)

    print(f"Launching SGLang Engine with {DENSE_MODEL_NAME}...")
    engine = sgl.Engine(
        model_path=DENSE_MODEL_NAME,
        attention_backend="flashinfer",
        enable_deterministic_inference=True,
        random_seed=42,
        skip_tokenizer_init=True,
        mem_fraction_static=0.8,
        max_running_requests=1,
    )

    records = []
    prompt_lengths = []

    try:
        for i, text in enumerate(texts):
            if len(records) >= num_samples:
                break

            try:
                ids = tokenizer.encode(text, add_special_tokens=False)
                if len(ids) < 5:
                    continue

                start_pos = int(rng.integers(0, max(1, len(ids) - 3)))

                outputs = engine.generate(
                    input_ids=[ids],
                    sampling_params={
                        "temperature": 1.0,
                        "top_p": 1.0,
                        "top_k": TOP_K,
                        "max_new_tokens": 1,
                    },
                    return_logprob=True,
                    logprob_start_len=start_pos,
                    top_logprobs_num=TOP_K,
                )
                meta = outputs[0]["meta_info"]

                records.append(
                    dict(id=i, text=text, ids=ids, start_pos=start_pos, meta=meta)
                )
                prompt_lengths.append(len(ids))

                if (i + 1) % 50 == 0:
                    print(f"Processed {len(records)}/{num_samples} samples")

            except Exception as e:
                print(f"Warning: Failed to process sample {i}: {e}")
                continue

        if not records:
            raise RuntimeError(
                "Failed to generate any baseline records. Please check the warnings above for errors."
            )

        # Save baseline files
        with open(baseline_file, "wb") as f:
            pickle.dump(records, f)
        with open(meta_file, "w", encoding="utf-8") as f:
            json.dump(records[:2], f, ensure_ascii=False, indent=2)

        print(f"✅ Saved {len(records)} samples to {baseline_file}")
        print(f"✅ Meta preview saved to {meta_file}")

        if prompt_lengths:
            avg_prompt_length = sum(prompt_lengths) / len(prompt_lengths)
            print(f"📊 Average prompt length: {avg_prompt_length:.2f} tokens")

    finally:
        engine.shutdown()
        torch.cuda.empty_cache()
218
219
220
221
222
223
224
225


class TestLogprobsDense(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        """Set up the test class - initialize the engine once for all tests."""
        print(f"Launching SGLang Engine with {DENSE_MODEL_NAME}...")
226
        cls.engine = sgl.Engine(**DEFAULT_ENGINE_CONFIG)
227
228
229
230
231
232
233

    @classmethod
    def tearDownClass(cls):
        """Clean up after all tests - shutdown the engine."""
        cls.engine.shutdown()
        torch.cuda.empty_cache()

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    @classmethod
    def restart_engine_with_config(cls, **kwargs):
        """Create engine with custom configuration"""
        # Safely shutdown existing engine
        cls.engine.shutdown()
        torch.cuda.empty_cache()

        # Set chunk size
        chunk_size = kwargs.pop("chunk_size", None)
        if chunk_size is not None:
            print(f"Setting chunk size to {chunk_size}")
            os.environ["SGLANG_ENABLE_LOGITS_PROCESSER_CHUNK"] = "True"
            os.environ["SGLANG_LOGITS_PROCESSER_CHUNK_SIZE"] = str(chunk_size)
        else:
            os.environ["SGLANG_ENABLE_LOGITS_PROCESSER_CHUNK"] = "False"

        # Create engine with merged configuration
        engine_config = {**DEFAULT_ENGINE_CONFIG, **kwargs}
        cls.engine = sgl.Engine(**engine_config)

254
255
256
257
    def load_test_data(self, baseline_file=None):
        """Load test data from local baseline file. In test mode, only local baseline is supported."""
        if not baseline_file:
            raise ValueError("baseline_file is required in test mode")
258

259
260
261
262
        if not os.path.exists(baseline_file):
            raise FileNotFoundError(
                f"Baseline file not found: {baseline_file}. Please run 'gen' mode first to generate the baseline."
            )
263

264
265
266
267
268
269
270
271
        print(f"Loading local baseline from {baseline_file}...")
        try:
            with open(baseline_file, "rb") as f:
                records = pickle.load(f)
            print(f"Successfully loaded {len(records)} records from local baseline")
            return records
        except (IOError, pickle.PickleError) as e:
            raise Exception(f"Failed to load local baseline: {e}") from e
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    def compare_meta(self, baseline_meta, sglang_meta):
        """Compare metadata between two outputs and return max and mean differences."""
        diffs = []
        for key in ["input_top_logprobs", "output_top_logprobs"]:
            baseline_logprobs, sglang_logprobs = baseline_meta[key], sglang_meta[key]
            self.assertEqual(
                len(baseline_logprobs),
                len(sglang_logprobs),
                f"Length of {key} is not equal, sglang did not return the correct number of log probs(should be top 20)",
            )
            for baseline_entry, sglang_entry in zip(baseline_logprobs, sglang_logprobs):
                if not baseline_entry or not sglang_entry:
                    continue
                baseline_token_map = {tid: lp for lp, tid, _ in baseline_entry}
                sglang_token_map = {tid: lp for lp, tid, _ in sglang_entry}
                common_tokens = baseline_token_map.keys() & sglang_token_map.keys()
                self.assertGreaterEqual(
                    len(common_tokens),
291
                    TOP_K,
292
293
294
295
296
297
                    f"there are only {len(common_tokens)} common topk tokens that matches",
                )
                for token_id in common_tokens:
                    diffs.append(
                        abs(baseline_token_map[token_id] - sglang_token_map[token_id])
                    )
298
299
        if not diffs:
            return 0.0, 0.0
300
301
        return max(diffs), float(np.mean(diffs))

302
    def test_logprobs_comparison(self, baseline_file=None):
303
304
        """Test the logprobs comparison functionality with different parameter combinations."""
        # Load test data with retry mechanism
305
        records = self.load_test_data(baseline_file)
306

307
308
309
310
311
312
313
314
315
316
317
        # Fast configs for CI
        test_configs = [
            {"num_samples": NUM_SAMPLES},
            {"num_samples": 42, "chunk_size": 1, "max_running_requests": 16},
            {"num_samples": 42, "chunk_size": 2, "max_running_requests": 16},
            {"num_samples": 42, "chunk_size": 3, "max_running_requests": 16},
            {"num_samples": NUM_SAMPLES, "chunk_size": 16, "max_running_requests": 128},
            {"num_samples": NUM_SAMPLES, "chunk_size": 128, "max_running_requests": 16},
            {"num_samples": NUM_SAMPLES, "chunk_size": 128, "max_running_requests": 8},
            {"num_samples": NUM_SAMPLES, "chunk_size": 128, "max_running_requests": 32},
            {
318
                "num_samples": NUM_SAMPLES,
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
                "chunk_size": 128,
                "max_running_requests": 128,
            },
            {"num_samples": NUM_SAMPLES, "chunk_size": 256, "max_running_requests": 8},
            {"num_samples": NUM_SAMPLES, "chunk_size": 256, "max_running_requests": 32},
            {
                "num_samples": NUM_SAMPLES,
                "chunk_size": 256,
                "max_running_requests": 128,
            },
        ]

        # Run tests
        for config in test_configs:
            with self.subTest(config=config):
                print(f"Testing with config: {config}")

                # Sample records for this config
                test_records = random.sample(records, k=min(NUM_SAMPLES, len(records)))
                random.shuffle(test_records)

                # Calculate how many samples should return logprobs
                logprob_count = int(len(test_records) * LOGPROB_SAMPLE_RATIO)
                print(
                    f"Testing with {len(test_records)} samples, temperature={TEMPERATURE}"
                )
                print(
                    f"Will return logprobs for {logprob_count} samples (ratio: {LOGPROB_SAMPLE_RATIO})"
                )
348

349
350
                all_max, all_mean = [], []
                logprob_returned_count = 0
351

352
353
354
                # Process all records at once
                input_ids = [rec["ids"] for rec in test_records]
                logprob_start_lens = [rec["start_pos"] for rec in test_records]
355

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                # Determine which samples should return logprobs (randomly selected)
                logprob_indices = set(
                    random.sample(range(len(test_records)), logprob_count)
                )
                return_logprob_array = [
                    sample_idx in logprob_indices
                    for sample_idx in range(len(test_records))
                ]

                # Sampling param per request
                sampling_params = [
                    {
                        "temperature": TEMPERATURE,
                        "top_p": 1.0,
                        "top_k": TOP_K,
                        "max_new_tokens": 1,
                    }
                    for _ in test_records
                ]

                # Some configs must restart the engine to take effect
                chunk_size = config.get("chunk_size", None)
                max_running_requests = config.get("max_running_requests", None)
                if chunk_size is not None or max_running_requests is not None:
                    self.restart_engine_with_config(
                        chunk_size=chunk_size,
                        max_running_requests=max_running_requests,
383
384
                    )

385
386
387
388
389
390
391
                outputs = self.engine.generate(
                    input_ids=input_ids,
                    sampling_params=sampling_params,
                    return_logprob=return_logprob_array,
                    logprob_start_len=logprob_start_lens,
                    top_logprobs_num=TOP_K,
                )
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
                for sample_idx, (rec, output) in enumerate(zip(test_records, outputs)):
                    # Only compare logprobs for samples that should have them
                    if sample_idx in logprob_indices:
                        # Safe access to meta_info and input_top_logprobs
                        meta_info = output.get("meta_info")
                        input_top_logprobs = (
                            meta_info.get("input_top_logprobs") if meta_info else None
                        )

                        self.assertIsNotNone(
                            input_top_logprobs,
                            f"return_logprob enabled on this sample, but input_top_logprobs is None (length: {len(input_top_logprobs) if input_top_logprobs is not None else 'N/A'})",
                        )
                        baseline_meta = rec["meta"]
                        sglang_meta = meta_info

                        max_diff, mean_diff = self.compare_meta(
                            baseline_meta, sglang_meta
                        )
                        all_max.append(max_diff)
                        all_mean.append(mean_diff)
                        logprob_returned_count += 1
                    else:
                        # Verify that logprobs were not returned for this sample
                        meta_info = output.get("meta_info")
                        input_top_logprobs = (
                            meta_info.get("input_top_logprobs") if meta_info else None
                        )
                        output_token_ids_logprobs = (
                            meta_info.get("output_token_ids_logprobs")
                            if meta_info
                            else None
                        )

                        self.assertFalse(
                            input_top_logprobs,
                            f"return_logprob is disabled on this sample, Sample {sample_idx} should not have logprobs, content: {output_token_ids_logprobs}",
                        )

                max_of_max = max(all_max) if all_max else 0.0
                mean_of_mean = np.mean(all_mean) if all_mean else 0.0

                print(f"max Δ={max_of_max:.6g}")
                print(f"mean Δ={mean_of_mean:.6g}")
                print(
                    f"logprobs returned for {logprob_returned_count} samples (expected: {logprob_count})"
                )
440

441
442
443
444
445
446
                # Verify correct number of logprobs returned
                self.assertEqual(
                    logprob_returned_count,
                    logprob_count,
                    f"Expected {logprob_count} samples with logprobs, got {logprob_returned_count}",
                )
447

448
449
450
451
452
453
454
455
                # Basic validation
                self.assertIsInstance(all_max, list)
                self.assertIsInstance(all_mean, list)
                self.assertGreater(
                    len(all_max),
                    0,
                    f"No test samples processed for config {{'num_samples': {NUM_SAMPLES}, 'logprob_sample_ratio': {LOGPROB_SAMPLE_RATIO}, 'temperature': {TEMPERATURE}}}",
                )
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
                # Tolerance checks with clear error messages
                failed_samples = []
                for sample_idx, (max_diff, mean_diff) in enumerate(
                    zip(all_max, all_mean)
                ):
                    if max_diff > DENSE_TOLERANCE_MAX_DIFF:
                        failed_samples.append(
                            f"Sample {sample_idx}: max_diff={max_diff:.6g} > {DENSE_TOLERANCE_MAX_DIFF}"
                        )
                    if mean_diff > DENSE_TOLERANCE_MEAN_DIFF:
                        failed_samples.append(
                            f"Sample {sample_idx}: mean_diff={mean_diff:.6g} > {DENSE_TOLERANCE_MEAN_DIFF}"
                        )

                if failed_samples:
                    self.fail(
                        f"Config {{'num_samples': {NUM_SAMPLES}, 'logprob_sample_ratio': {LOGPROB_SAMPLE_RATIO}, 'temperature': {TEMPERATURE}}} - Tolerance exceeded in {len(failed_samples)} samples:\n"
                        + "\n".join(failed_samples[:5])
475
476
477
                    )


478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
def main():
    """Main function to handle command line arguments and run either generation or testing."""
    parser = argparse.ArgumentParser(
        description="SGLang Logprobs Test and Baseline Generation"
    )
    parser.add_argument(
        "mode",
        choices=["gen", "test"],
        help="Mode to run: 'gen' to generate baseline, 'test' to run tests",
    )

    args = parser.parse_args()

    if args.mode == "gen":
        print("🚀 Generating baseline...")
        generate_baseline()
        print(f"\n✅ Baseline generation complete!")
        print(f"📁 Baseline saved to: {DEFAULT_BASELINE_PKL}")
        print(f"📁 Metadata preview saved to: {DEFAULT_META_JSON}")
        print(f"\n💡 Next steps:")
        print(f"   1. Make your code changes")
        print(f"   2. Run: python {__file__} test")

    elif args.mode == "test":
        print("🧪 Running logprobs test...")
        if not os.path.exists(DEFAULT_BASELINE_PKL):
            print(f"❌ Baseline file not found: {DEFAULT_BASELINE_PKL}")
            print(f"💡 Generate baseline first by running:")
            print(f"   python {__file__} gen")
            print(f"   This will download ShareGPT data and generate a local baseline.")
            return 1

        # Set environment variable for testing
        os.environ["RETURN_ORIGINAL_LOGPROB"] = "True"

        # Create test instance and run
        test_instance = TestLogprobsDense()
        test_instance.setUpClass()
        try:
            test_instance.test_logprobs_comparison(baseline_file=DEFAULT_BASELINE_PKL)
            print("\n✅ Test completed successfully!")
        finally:
            test_instance.tearDownClass()

    return 0


525
if __name__ == "__main__":
526
    exit(main())