test_mamba_unittest.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import inspect
import os
import unittest

import torch

from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
from sglang.srt.managers.schedule_batch import Req
from sglang.srt.mem_cache.allocator import TokenToKVPoolAllocator
from sglang.srt.mem_cache.mamba_radix_cache import MambaRadixCache
from sglang.srt.mem_cache.memory_pool import HybridLinearKVPool, HybridReqToTokenPool
from sglang.srt.mem_cache.radix_cache import RadixKey
from sglang.srt.sampling.sampling_params import SamplingParams


class TestMamba(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        pass

    @classmethod
    def tearDownClass(cls):
        pass

    def test_hybrid_linear_kv_pool(self):
        size = 16
        head_num = 2
        head_dim = 256
        num_layers = 48
        global_interval = 4
        dtype = torch.bfloat16
        device = "cuda"
        full_attention_layer_ids = [
            i for i in range(global_interval - 1, num_layers, global_interval)
        ]
        pool = HybridLinearKVPool(
            size=size,
            dtype=dtype,
            page_size=1,
            head_num=head_num,
            head_dim=head_dim,
            full_attention_layer_ids=full_attention_layer_ids,
            enable_kvcache_transpose=False,
            device=device,
45
            mamba_pool=None,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        )
        assert pool._transfer_full_attention_id(global_interval - 1) == 0
        assert pool._transfer_full_attention_id(2 * global_interval - 1) == 1
        with self.assertRaises(ValueError) as context:
            pool._transfer_full_attention_id(1)
        self.assertIn(
            "layer_id=1 not in full attention layers:", str(context.exception)
        )

    def test_mamba_pool(self):
        max_num_reqs = 10
        mamba_cache_size = 20
        max_context_len = 128
        device = "cuda"
        global_interval = 4
        num_layers = 48
        full_attention_layer_ids = [
            i for i in range(global_interval - 1, num_layers, global_interval)
        ]
        mamba_layers = [
            i for i in range(num_layers) if i not in full_attention_layer_ids
        ]
        shape = Mamba2StateShape.create(
            tp_world_size=1,
            intermediate_size=4096,
            n_groups=16,
            num_heads=32,
            head_dim=128,
            state_size=128,
            conv_kernel=4,
        )
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = "bfloat16"
        mamba2_cache_params = Mamba2CacheParams(shape=shape, layers=mamba_layers)

        req_to_token_pool = HybridReqToTokenPool(
            size=max_num_reqs,
            mamba_size=mamba_cache_size,
            max_context_len=max_context_len,
            device=device,
            enable_memory_saver=False,
            cache_params=mamba2_cache_params,
            speculative_num_draft_tokens=3,
        )

        assert req_to_token_pool.available_size() == max_num_reqs
        assert req_to_token_pool.mamba_pool.available_size() == mamba_cache_size

        sampling_params = SamplingParams(
            temperature=0,
            max_new_tokens=1,
        )
        req = Req(
            rid=0,
            origin_input_text="",
            origin_input_ids=[],
            sampling_params=sampling_params,
        )

        # alloc req
        req_index = req_to_token_pool.alloc(1, [req])
        assert req_to_token_pool.available_size() == max_num_reqs - 1
        assert req_to_token_pool.mamba_pool.available_size() == mamba_cache_size - 1

        # free req
        req_to_token_pool.free(req_index)
        assert req_to_token_pool.available_size() == max_num_reqs
        assert req_to_token_pool.mamba_pool.available_size() == mamba_cache_size

        # alloc req without free mamba cache
        req.mamba_pool_idx = None
        req_index = req_to_token_pool.alloc(1, [req])
        req_to_token_pool.free(req_index, free_mamba_cache=False)
        assert req_to_token_pool.available_size() == max_num_reqs
        assert req_to_token_pool.mamba_pool.available_size() == mamba_cache_size - 1

        # alloc again
        req_index = req_to_token_pool.alloc(1, [req])
        assert req_to_token_pool.available_size() == max_num_reqs - 1
        assert req_to_token_pool.mamba_pool.available_size() == mamba_cache_size - 1

    def test_mamba_radix_cache_1(self):
        # kv cache
        size = 128
        dtype = torch.bfloat16
        head_num = 2
        head_dim = 256
        num_layers = 48
        global_interval = 4
        max_num_reqs = 10
        mamba_cache_size = 20
        max_context_len = 128
        device = "cuda"
        full_attention_layer_ids = [
            i for i in range(global_interval - 1, num_layers, global_interval)
        ]

        # mamba
        mamba_layers = [
            i for i in range(num_layers) if i not in full_attention_layer_ids
        ]
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = "bfloat16"
        shape = Mamba2StateShape.create(
            tp_world_size=1,
            intermediate_size=4096,
            n_groups=16,
            num_heads=32,
            head_dim=128,
            state_size=128,
            conv_kernel=4,
        )
        mamba2_cache_params = Mamba2CacheParams(shape=shape, layers=mamba_layers)

        req_to_token_pool = HybridReqToTokenPool(
            size=max_num_reqs,
            mamba_size=mamba_cache_size,
            max_context_len=max_context_len,
            device=device,
            enable_memory_saver=False,
            cache_params=mamba2_cache_params,
            speculative_num_draft_tokens=3,
        )
        # setup kv pool
        pool = HybridLinearKVPool(
            size=size,
            dtype=dtype,
            page_size=1,
            head_num=head_num,
            head_dim=head_dim,
            full_attention_layer_ids=full_attention_layer_ids,
            enable_kvcache_transpose=False,
            device=device,
177
            mamba_pool=req_to_token_pool.mamba_pool,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        )

        # setup token to kv pool allocator
        allocator = TokenToKVPoolAllocator(
            size=size,
            dtype=dtype,
            device=device,
            kvcache=pool,
            need_sort=False,
        )
        # setup radix cache
        tree = MambaRadixCache(
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool_allocator=allocator,
            page_size=1,
            disable=False,
        )

        def make_dummy_req():
            sampling_params = SamplingParams(
                temperature=0,
                max_new_tokens=1,
            )
            req = Req(
                rid=0,
                origin_input_text="",
                origin_input_ids=[],
                sampling_params=sampling_params,
            )
            req_to_token_pool.alloc(1, reqs=[req])
            return req

        mamba_pool = req_to_token_pool.mamba_pool
        # test
        print(
            f"[Start] allocator mamba available size: {mamba_pool.available_size()}, full available size: {allocator.available_size()}"
        )
        req1 = make_dummy_req()
        req1_token_ids, req1_kv_indices = [1, 2, 3], allocator.alloc(3)
        assert len(req1_token_ids) == len(req1_kv_indices)
        print(
            f"req1: inserting, req1_token_ids: {req1_token_ids}, req1_kv_indices: {req1_kv_indices}"
        )
        prefix_len = tree.insert(
            RadixKey(req1_token_ids), req1_kv_indices, req1.mamba_pool_idx.unsqueeze(0)
        )
        print(
            f"req1: prefix_len: {prefix_len}, allocator mamba available size: {mamba_pool.available_size()}, full available size: {allocator.available_size()}"
        )
        req2 = make_dummy_req()
        req2_token_ids, req2_kv_indices = [1, 2, 3, 4, 5, 6, 7], allocator.alloc(7)
        assert len(req2_token_ids) == len(req2_kv_indices)
        print(
            f"req2: inserting, req2_token_ids: {req2_token_ids}, req2_kv_indices: {req2_kv_indices}"
        )
        prefix_len = tree.insert(
            RadixKey(req2_token_ids), req2_kv_indices, req2.mamba_pool_idx.unsqueeze(0)
        )
        print(
            f"req2: prefix_len: {prefix_len}, allocator mamba available size: {mamba_pool.available_size()}, full available size: {allocator.available_size()}"
        )

        req3 = make_dummy_req()
        req3_token_ids, req3_kv_indices = [10, 11, 12], allocator.alloc(3)
        assert len(req3_token_ids) == len(req3_kv_indices)
        print(
            f"req3: inserting, req3_token_ids: {req3_token_ids}, req3_kv_indices: {req3_kv_indices}"
        )
        prefix_len = tree.insert(
            RadixKey(req3_token_ids), req3_kv_indices, req3.mamba_pool_idx.unsqueeze(0)
        )
        print(
            f"req3: prefix_len: {prefix_len}, allocator mamba available size: {mamba_pool.available_size()}, full available size: {allocator.available_size()}"
        )
        req4 = make_dummy_req()
        req4_token_ids, req4_kv_indices = [1, 2, 3, 4, 5, 60, 70], allocator.alloc(7)
        assert len(req4_token_ids) == len(req4_kv_indices)
        print(
            f"req4: inserting, req4_token_ids: {req4_token_ids}, req4_kv_indices: {req4_kv_indices}"
        )
        prefix_len = tree.insert(
            RadixKey(req4_token_ids), req4_kv_indices, req4.mamba_pool_idx.unsqueeze(0)
        )
        print(
            f"req4: prefix_len: {prefix_len}, allocator mamba available size: {mamba_pool.available_size()}, full available size: {allocator.available_size()}"
        )

        tree.pretty_print()
        full_num_tokens = 1
        print(f"evicting {full_num_tokens} full token")
        tree.evict(full_num_tokens=full_num_tokens)
        tree.pretty_print()

        mamba_num = 1
        print(f"evicting {mamba_num} mamba")
        tree.evict_mamba(mamba_num=mamba_num)
        tree.pretty_print()

        req5_token_ids = [1, 2, 3, 4, 5]
        result = tree.match_prefix(RadixKey(req5_token_ids))
        kv_indices, last_node = result.device_indices, result.last_device_node
        print(
            f"req5: token_ids: {req5_token_ids}, matched kv_indices: {kv_indices}, last_node.key: {last_node.key}"
        )
        assert len(kv_indices) == 0

        req6_token_ids = [1, 2, 3, 4, 5, 60, 70]
        result = tree.match_prefix(RadixKey(req6_token_ids))
        kv_indices, last_node = result.device_indices, result.last_device_node
        print(
            f"req6: token_ids: {req6_token_ids}, matched kv_indices: {kv_indices}, last_node.key: {last_node.key}"
        )
        assert len(kv_indices) == 7
        assert len(last_node.key) == 2

        req7_token_ids = [1, 2, 3, 4, 5, 6, 7]
        result = tree.match_prefix(RadixKey(req7_token_ids))
        kv_indices, last_node = result.device_indices, result.last_device_node
        print(
            f"req7: token_ids: {req7_token_ids}, matched kv_indices: {kv_indices}, last_node.key: {last_node.key}"
        )
        assert len(kv_indices) == 7
        assert len(last_node.key) == 2

        mamba_num = 1
        print(f"evicting {mamba_num} mamba")
        tree.evict_mamba(mamba_num=mamba_num)
        tree.pretty_print()

        req8_token_ids = [1, 2, 3, 4, 5, 60, 70]
        result = tree.match_prefix(RadixKey(req8_token_ids))
        kv_indices, last_node = result.device_indices, result.last_device_node
        print(
            f"req8: token_ids: {req8_token_ids}, matched kv_indices: {kv_indices}, last_node.key: {last_node.key}"
        )
        assert len(kv_indices) == 0
        assert len(last_node.key) == 0

        req9_token_ids = [1, 2, 3, 4, 5, 6, 7]
        req9 = make_dummy_req()
        result = tree.match_prefix(
            RadixKey(req9_token_ids), **({"req": req9, "cow_mamba": True})
        )
        kv_indices, last_node = result.device_indices, result.last_device_node
        assert req9.mamba_pool_idx is not None
        assert torch.all(
            mamba_pool.mamba_cache.conv[:, req9.mamba_pool_idx]
            == mamba_pool.mamba_cache.conv[:, last_node.mamba_value]
        )
        assert torch.all(
            mamba_pool.mamba_cache.temporal[:, req9.mamba_pool_idx]
            == mamba_pool.mamba_cache.temporal[:, last_node.mamba_value]
        )


if __name__ == "__main__":
    unittest.main()