llava_onevision_server.py 7.98 KB
Newer Older
1
2
3
"""
Usage:

4
python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8
5

Kiv Chen's avatar
Kiv Chen committed
6
python3 llava_onevision_server.py
7
8
"""

9
10
11
12
13
14
15
import io
import os
import sys
import time

import numpy as np
import openai
16
import pybase64
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import requests
from decord import VideoReader, cpu
from PIL import Image

# pip install httpx==0.23.3
# pip install decord
# pip install protobuf==3.20.0


def download_video(url, cache_dir):
    file_path = os.path.join(cache_dir, "jobs.mp4")
    os.makedirs(cache_dir, exist_ok=True)

    response = requests.get(url)
    response.raise_for_status()

    with open(file_path, "wb") as f:
        f.write(response.content)

    print(f"File downloaded and saved to: {file_path}")
    return file_path


def create_openai_client(base_url):
    return openai.Client(api_key="EMPTY", base_url=base_url)


def image_stream_request_test(client):
    print("----------------------Image Stream Request Test----------------------")
    stream_request = client.chat.completions.create(
        model="default",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
                        },
                    },
                    {
                        "type": "text",
                        "text": "Please describe this image. Please list the benchmarks and the models.",
                    },
                ],
            },
        ],
        temperature=0.7,
        max_tokens=1024,
        stream=True,
    )
    stream_response = ""

    for chunk in stream_request:
        if chunk.choices[0].delta.content is not None:
            content = chunk.choices[0].delta.content
            stream_response += content
            sys.stdout.write(content)
            sys.stdout.flush()

    print("-" * 30)


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def multi_image_stream_request_test(client):
    print(
        "----------------------Multi-Images Stream Request Test----------------------"
    )
    stream_request = client.chat.completions.create(
        model="default",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
                        },
96
                        "modalities": "multi-images",
97
98
99
100
101
102
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/test/lang/example_image.png"
                        },
103
                        "modalities": "multi-images",
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                    },
                    {
                        "type": "text",
                        "text": "I have shown you two images. Please describe the two images to me.",
                    },
                ],
            },
        ],
        temperature=0.7,
        max_tokens=1024,
        stream=True,
    )
    stream_response = ""

    for chunk in stream_request:
        if chunk.choices[0].delta.content is not None:
            content = chunk.choices[0].delta.content
            stream_response += content
            sys.stdout.write(content)
            sys.stdout.flush()

    print("-" * 30)


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def video_stream_request_test(client, video_path):
    print("------------------------Video Stream Request Test----------------------")
    messages = prepare_video_messages(video_path)

    video_request = client.chat.completions.create(
        model="default",
        messages=messages,
        temperature=0,
        max_tokens=1024,
        stream=True,
    )
    print("-" * 30)
    video_response = ""

    for chunk in video_request:
        if chunk.choices[0].delta.content is not None:
            content = chunk.choices[0].delta.content
            video_response += content
            sys.stdout.write(content)
            sys.stdout.flush()
    print("-" * 30)


def image_speed_test(client):
    print("----------------------Image Speed Test----------------------")
153
    start_time = time.perf_counter()
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    request = client.chat.completions.create(
        model="default",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
                        },
                    },
                    {
                        "type": "text",
                        "text": "Please describe this image. Please list the benchmarks and the models.",
                    },
                ],
            },
        ],
        temperature=0,
        max_tokens=1024,
    )
176
    end_time = time.perf_counter()
177
178
179
180
181
182
183
184
185
186
    response = request.choices[0].message.content
    print(response)
    print("-" * 30)
    print_speed_test_results(request, start_time, end_time)


def video_speed_test(client, video_path):
    print("------------------------Video Speed Test------------------------")
    messages = prepare_video_messages(video_path)

187
    start_time = time.perf_counter()
188
189
190
191
192
193
    video_request = client.chat.completions.create(
        model="default",
        messages=messages,
        temperature=0,
        max_tokens=1024,
    )
194
    end_time = time.perf_counter()
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    video_response = video_request.choices[0].message.content
    print(video_response)
    print("-" * 30)
    print_speed_test_results(video_request, start_time, end_time)


def prepare_video_messages(video_path):
    max_frames_num = 32
    vr = VideoReader(video_path, ctx=cpu(0))
    total_frame_num = len(vr)
    uniform_sampled_frames = np.linspace(
        0, total_frame_num - 1, max_frames_num, dtype=int
    )
    frame_idx = uniform_sampled_frames.tolist()
    frames = vr.get_batch(frame_idx).asnumpy()

    base64_frames = []
    for frame in frames:
        pil_img = Image.fromarray(frame)
        buff = io.BytesIO()
        pil_img.save(buff, format="JPEG")
216
        base64_str = pybase64.b64encode(buff.getvalue()).decode("utf-8")
217
218
219
220
221
        base64_frames.append(base64_str)

    messages = [{"role": "user", "content": []}]

    for base64_frame in base64_frames:
222
223
224
225
226
227
        frame_format = {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{base64_frame}"},
            "modalities": "video",
        }
        messages[0]["content"].append(frame_format)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

    prompt = {"type": "text", "text": "Please describe the video in detail."}
    messages[0]["content"].append(prompt)

    return messages


def print_speed_test_results(request, start_time, end_time):
    total_tokens = request.usage.total_tokens
    completion_tokens = request.usage.completion_tokens
    prompt_tokens = request.usage.prompt_tokens

    print(f"Total tokens: {total_tokens}")
    print(f"Completion tokens: {completion_tokens}")
    print(f"Prompt tokens: {prompt_tokens}")
    print(f"Time taken: {end_time - start_time} seconds")
    print(f"Token per second: {total_tokens / (end_time - start_time)}")
    print(f"Completion token per second: {completion_tokens / (end_time - start_time)}")
    print(f"Prompt token per second: {prompt_tokens / (end_time - start_time)}")


def main():
    url = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"
    cache_dir = os.path.expanduser("~/.cache")
    video_path = download_video(url, cache_dir)

    client = create_openai_client("http://127.0.0.1:30000/v1")

    image_stream_request_test(client)
257
    multi_image_stream_request_test(client)
258
259
260
261
262
263
264
    video_stream_request_test(client, video_path)
    image_speed_test(client)
    video_speed_test(client, video_path)


if __name__ == "__main__":
    main()