test_triton_fused_moe.py 4.73 KB
Newer Older
Yuan Luo's avatar
Yuan Luo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import unittest

import torch
import torch.nn.functional as F
from tqdm import tqdm

from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.moe.fused_moe_triton.triton_kernels_moe import (
    triton_kernel_moe_forward,
)
from sglang.test.test_utils import CustomTestCase


class TestFusedMOE(CustomTestCase):
    NUM_EXPERTS = [8, 64]
    TOP_KS = [2, 4]

    @staticmethod
    def create_random_cuda_tensor(shape, dtype, mean=0, std=0.01):
        """Create a random CUDA tensor

        Args:
            shape: Tensor shape
            dtype: Data type
            mean: Mean value
            std: Standard deviation

        Returns:
            torch.Tensor: Randomly initialized CUDA tensor
        """
        return torch.empty(shape, dtype=dtype, device="cuda").normal_(mean, std)

    def get_tolerance(self, dtype):
        """Get tolerance values for different data types

        Args:
            dtype: Data type

        Returns:
            tuple: (relative tolerance, absolute tolerance)
        """
        if dtype == torch.float32:
            return 1e-5, 1e-5
        elif dtype in [torch.float16, torch.bfloat16]:
            return 1e-5, 1e-5
        else:
            return 1e-2, 1e-2  # Default values for other types

    def torch_naive_moe(
        self,
        a,
        w1,
        w2,
        score,
        topk,
    ):
        B, D = a.shape
        a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
        out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
        score = torch.softmax(score, dim=-1, dtype=torch.float32)
        topk_weight, topk_ids = torch.topk(score, topk)
        topk_weight = topk_weight.view(-1)
        topk_ids = topk_ids.view(-1)

        if w1.dtype == torch.float8_e4m3fn:
            w1_compute = w1.to(a.dtype)
            w2_compute = w2.to(a.dtype)
        else:
            w1_compute = w1
            w2_compute = w2

        for i in range(w1_compute.shape[0]):
            mask = topk_ids == i
            if mask.sum():
                out[mask] = SiluAndMul()(
                    a[mask] @ w1_compute[i].transpose(0, 1)
                ) @ w2_compute[i].transpose(0, 1)

        return (
            out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
        ).sum(dim=1)

    def _test_case(self, m, n, k, e, topk, dtype):
        rtol, atol = self.get_tolerance(dtype)

        a = self.create_random_cuda_tensor((m, k), dtype)
        w1 = self.create_random_cuda_tensor((e, 2 * n, k), dtype)
        w2 = self.create_random_cuda_tensor((e, k, n), dtype)
        w1_tri = w1.clone()
        w2_tri = w2.clone()
        w1_tri = w1_tri.transpose(-2, -1).contiguous()
        w2_tri = w2_tri.transpose(-2, -1).contiguous()
        score = self.create_random_cuda_tensor((m, e), dtype)

        triton_output = triton_kernel_moe_forward(
            a, w1_tri, w2_tri, score, topk, renormalize=False
        )
        torch_output = self.torch_naive_moe(a, w1, w2, score, topk)
        torch.testing.assert_close(triton_output, torch_output, rtol=rtol, atol=atol)

    def test_various_configurations(self):
        m_values = [1, 32, 64, 256]
        n_values = [128, 1024]
        k_values = [128, 512, 1024]
        dtypes = [torch.bfloat16]

        # Calculate total number of tests
        total_tests = (
            len(m_values)
            * len(n_values)
            * len(k_values)
            * len(self.NUM_EXPERTS)
            * len(self.TOP_KS)
            * len(dtypes)
        )

        # Create progress bar
        with tqdm(total=total_tests, desc="Running MoE tests") as pbar:
            for m in m_values:
                for n in n_values:
                    for k in k_values:
                        for e in self.NUM_EXPERTS:
                            for topk in self.TOP_KS:
                                for dtype in dtypes:
                                    with self.subTest(
                                        m=m,
                                        n=n,
                                        k=k,
                                        e=e,
                                        topk=topk,
                                        dtype=dtype,
                                    ):
                                        self._test_case(
                                            m,
                                            n,
                                            k,
                                            e,
                                            topk,
                                            dtype,
                                        )
                                        torch.cuda.empty_cache()
                                    pbar.update(1)


if __name__ == "__main__":
    unittest.main()