test_shared_expert.py 6.04 KB
Newer Older
1
2
3
4
import itertools
import math
import unittest

blzheng's avatar
blzheng committed
5
6
# TODO: use interface in cpu.py
import sgl_kernel
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torch.nn as nn
from utils import (
    BLOCK_K,
    BLOCK_N,
    SiluAndMul,
    factor_for_scale,
    fp8_max,
    fp8_min,
    per_token_quant_int8,
    precision,
    scaled_weight,
    torch_naive_moe,
    torch_w8a8_per_column_moe,
)

from sglang.test.test_utils import CustomTestCase


class TestSharedExpert(CustomTestCase):
    M = [2, 121]
    N = [32, 32 * 4]
    K = [32, 32 * 2]
    routed_scaling_factor = [16]

    M_fp8 = [2, 12]
    N_fp8 = [512]
    K_fp8 = [256]

    def _bf16_shared_expert(self, m, n, k, routed_scaling_factor):
        dtype = torch.bfloat16
        prepack = True

        hidden_states = torch.randn(m, k, dtype=dtype) / k
        w1 = torch.randn(2 * n, k, dtype=dtype)
        w2 = torch.randn(k, n, dtype=dtype)
        fused_output = torch.randn(m, k, dtype=dtype) / k

        # fused moe mutates content in hs
        hidden_states2 = hidden_states.clone()

        # bfloat16
        ref = torch_naive_moe(
            hidden_states.float(),
            w1.float(),
            w2.float(),
            fused_output.float(),
            routed_scaling_factor,
        ).to(dtype=dtype)
blzheng's avatar
blzheng committed
56
        res = torch.ops.sgl_kernel.shared_expert_cpu(
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            hidden_states,
            w1,
            w2,
            fused_output,
            routed_scaling_factor,
            True,
            False,
            False,
            None,
            None,
            None,
            None,
            None,
            False,
        )

        atol = rtol = precision[ref.dtype]
        self.assertTrue(torch.allclose(ref, res, atol=atol, rtol=rtol))

    def test_bf16_shared_expert(self):
        for params in itertools.product(
            self.M,
            self.N,
            self.K,
            self.routed_scaling_factor,
        ):
            with self.subTest(
                m=params[0],
                n=params[1],
                k=params[2],
                routed_scaling_factor=params[3],
            ):
                self._bf16_shared_expert(*params)

    def _int8_shared_expert(self, m, n, k, routed_scaling_factor):
        dtype = torch.bfloat16
        prepack = True

        hidden_states = torch.randn(m, k, dtype=dtype) / k
        w1 = torch.randn(2 * n, k, dtype=dtype)
        w2 = torch.randn(k, n, dtype=dtype)
        fused_output = torch.randn(m, k, dtype=dtype) / k

        # fused moe mutates content in hs
        hidden_states2 = hidden_states.clone()

        w1_q, w1_s = per_token_quant_int8(w1)
        w2_q, w2_s = per_token_quant_int8(w2)
        ref2 = torch_w8a8_per_column_moe(
            hidden_states2.float(),
            w1_q,
            w2_q,
            w1_s,
            w2_s,
            fused_output.float(),
            routed_scaling_factor,
        ).to(dtype=dtype)
blzheng's avatar
blzheng committed
114
        res2 = torch.ops.sgl_kernel.shared_expert_cpu(
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            hidden_states2,
            w1_q,
            w2_q,
            fused_output,
            routed_scaling_factor,
            True,
            True,
            False,
            w1_s,
            w2_s,
            None,
            None,
            None,
            False,
        )

        atol = rtol = precision[ref2.dtype]
        self.assertTrue(torch.allclose(ref2, res2, atol=atol, rtol=rtol))

    def test_int8_shared_expert(self):
        for params in itertools.product(
            self.M,
            self.N,
            self.K,
            self.routed_scaling_factor,
        ):
            with self.subTest(
                m=params[0],
                n=params[1],
                k=params[2],
                routed_scaling_factor=params[3],
            ):
                self._int8_shared_expert(*params)

    def _fp8_shared_expert(self, M, N, K, routed_scaling_factor):
        dtype = torch.bfloat16
        prepack = True

        a = torch.randn(M, K, dtype=dtype) / math.sqrt(K)

        w1_fp32 = torch.randn(1, 2 * N, K)
        w1 = (w1_fp32 * fp8_max).clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)

        w2_fp32 = torch.randn(1, K, N)
        w2 = (w2_fp32 * fp8_max).clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)

        w1s = torch.randn(1, 2 * N // BLOCK_N, K // BLOCK_K) * factor_for_scale
        w2s = torch.randn(1, K // BLOCK_N, N // BLOCK_K) * factor_for_scale

        w1_scaled = scaled_weight(w1, w1s).view(2 * N, K)
        w2_scaled = scaled_weight(w2, w2s).view(K, N)

        # change back to 2D
        w1, w2 = w1.squeeze(0), w2.squeeze(0)
        w1s, w2s = w1s.squeeze(0), w2s.squeeze(0)
        w1_scaled, w2_scaled = w1_scaled.squeeze(0), w2_scaled.squeeze(0)

        fused_out = torch.randn(M, K, dtype=dtype) / math.sqrt(K)
        a2 = a.clone()

        # ref
        ic0 = torch.matmul(a.float(), w1_scaled.transpose(0, 1))
        ic1 = SiluAndMul(ic0)
        shared_out = torch.matmul(ic1, w2_scaled.transpose(0, 1))
        ref_out = shared_out + fused_out.float() * routed_scaling_factor
        ref_out = ref_out.to(dtype=dtype)

blzheng's avatar
blzheng committed
182
183
184
        w1 = torch.ops.sgl_kernel.convert_weight_packed(w1)  # [2N, K]
        w2 = torch.ops.sgl_kernel.convert_weight_packed(w2)  # [K, N]
        out = torch.ops.sgl_kernel.shared_expert_cpu(
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            a2,
            w1,
            w2,
            fused_out,
            routed_scaling_factor,
            True,
            False,
            True,
            w1s,
            w2s,
            [BLOCK_N, BLOCK_K],
            None,
            None,
            True,
        )

        atol = rtol = precision[ref_out.dtype]
        self.assertTrue(torch.allclose(ref_out, out, atol=atol, rtol=rtol))

    def test_fp8_shared_expert(self):
        for params in itertools.product(
            self.M_fp8,
            self.N_fp8,
            self.K_fp8,
            self.routed_scaling_factor,
        ):
            with self.subTest(
                M=params[0],
                N=params[1],
                K=params[2],
                routed_scaling_factor=params[3],
            ):
                self._fp8_shared_expert(*params)


if __name__ == "__main__":
    unittest.main()