qkv_proj.cpp 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#include "common.h"
#include "gemm.h"
#include "vec.h"

namespace {

// [NOTE]: Fused kernel for QKV projection with weight absorption and RoPE
//
//   1. `q_a_proj` and `kv_a_proj_with_mqa` fused into one gemm,
//      otherwise we need to split IC for the 2nd gemm.
//   2. `q_a_layernorm` and `kv_a_layernorm` fused into one parallel loop.
//   3. k_input and v_input share the same storage, the torch API did
//      this in `set_kv_buffer`. No additional memory movement.
//

// [C0, C1] = A @ [B0, B1]
template <typename scalar_t>
void segment_gemm_kernel_impl(
    scalar_t* __restrict__ C0,
    scalar_t* __restrict__ C1,
    const scalar_t* __restrict__ A,
    const scalar_t* __restrict__ B0,
    const scalar_t* __restrict__ B1,
    int64_t M,
    int64_t N0,
    int64_t N1,
    int64_t K) {
  // convert_weight_packed make sure N0 and N1 are 32x
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB0 = div_up(N0, BLOCK_N);
  const int64_t NB1 = div_up(N1, BLOCK_N);
  const int64_t NB = NB0 + NB1;

  const bool use_brgemm = can_use_brgemm<scalar_t>(M);

  // parallel on [MB, NB0 + NB1]
  at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
    int64_t mb{0}, nb{0};
    data_index_init(begin, mb, MB, nb, NB);

    // for brgemm, use float32 for accumulate
    alignas(64) float Ctmp[BLOCK_M * BLOCK_N];

    for (int64_t i = begin; i < end; ++i) {
      UNUSED(i);
      int mb_start = mb * BLOCK_M;
      int mb_size = std::min(M - mb_start, BLOCK_M);
      int nb_start = nb * BLOCK_N;
      int nb_size = BLOCK_N;

      const scalar_t* __restrict__ B = nb < NB0 ? B0 : B1;
      scalar_t* __restrict__ C = nb < NB0 ? C0 : C1;
      int64_t ldc = nb < NB0 ? N0 : N1;
      int64_t local_nb_start = nb < NB0 ? nb_start : nb_start - N0;

      tinygemm_kernel<scalar_t>(
          /*   A */ A + mb_start * K,
          /*   B */ B + local_nb_start * K /* nb * BLOCK_N * K */,
          /*   C */ C + mb_start * ldc + local_nb_start,
          /* Ctmp*/ Ctmp,
          /*   M */ mb_size,
          /*   N */ nb_size,
          /*   K */ K,
          /* lda */ K,
          /* ldb */ nb_size,
          /* ldc */ ldc,
          /* brg */ use_brgemm);

      // move to the next index
      data_index_step(mb, MB, nb, NB);
    }

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
    }
  });
}

// [C0, C1] = A @ [B0, B1]
template <typename scalar_t>
void segment_gemm_kernel_impl(
    scalar_t* __restrict__ C0,
    scalar_t* __restrict__ C1,
    const uint8_t* __restrict__ A,
    const int8_t* __restrict__ B0,
    const int8_t* __restrict__ B1,
    const float* __restrict__ As,
    const float* __restrict__ Bs0,
    const float* __restrict__ Bs1,
    int64_t M,
    int64_t N0,
    int64_t N1,
    int64_t K) {
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB0 = div_up(N0, BLOCK_N);
  const int64_t NB1 = div_up(N1, BLOCK_N);
  const int64_t NB = NB0 + NB1;

  // TODO: brgemm u8s8 depends on PyTorch 2.7 release.
  const bool use_brgemm = false;

  // K + 4 after compensation
  const int64_t packed_row_size = get_row_size<int8_t>(K);

  // parallel on [MB, NB0 + NB1]
  at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
    int64_t mb{0}, nb{0};
    data_index_init(begin, mb, MB, nb, NB);

    // for brgemm, use float32 for accumulate
    alignas(64) int32_t Ctmp[BLOCK_M * BLOCK_N];

    for (int64_t i = begin; i < end; ++i) {
      UNUSED(i);
      int mb_start = mb * BLOCK_M;
      int mb_size = std::min(M - mb_start, BLOCK_M);
      int nb_start = nb * BLOCK_N;
      int nb_size = BLOCK_N;

      const int8_t* __restrict__ B = nb < NB0 ? B0 : B1;
      const float* __restrict__ Bs = nb < NB0 ? Bs0 : Bs1;
      scalar_t* __restrict__ C = nb < NB0 ? C0 : C1;
      int64_t ldc = nb < NB0 ? N0 : N1;
      int64_t local_nb_start = nb < NB0 ? nb_start : nb_start - N0;

      tinygemm_kernel<scalar_t>(
          /*   A */ A + mb_start * K,
          /*   B */ B + local_nb_start * packed_row_size /* nb * BLOCK_N * (K + 4) */,
          /*   C */ C + mb_start * ldc + local_nb_start,
          /* Ctmp*/ Ctmp,
          /*  As */ As + mb_start,
          /*  Bs */ Bs + local_nb_start,
          /*   M */ mb_size,
          /*   N */ nb_size,
          /*   K */ K,
          /* lda */ K,
          /* ldb */ nb_size,
          /* ldc */ ldc,
          /* brg */ use_brgemm);

      // move to the next index
      data_index_step(mb, MB, nb, NB);
    }

    if (use_brgemm) {
      at::native::cpublas::brgemm_release();
    }
  });
}

template <typename scalar_t>
inline float reduce(const scalar_t* __restrict__ x, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  fVec sum_fvec = fVec(float(0));

// no remainder
#pragma GCC unroll 4
  for (int64_t d = 0; d < size; d += bVec::size()) {
    bVec x_bvec = bVec::loadu(x + d);
    fVec x_fvec0, x_fvec1;
    std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);
    sum_fvec += x_fvec0 * x_fvec0;
    sum_fvec += x_fvec1 * x_fvec1;
  }
  return vec_reduce_sum(sum_fvec);
}

// map2 from aten functional doesn't have fast bf16->fp32 conversion
template <typename scalar_t>
inline void map2(scalar_t* y, const scalar_t* x, const scalar_t* __restrict__ w, float scale, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  fVec scale_fvec = fVec(scale);

// no remainder
#pragma GCC unroll 4
  for (int64_t d = 0; d < size; d += bVec::size()) {
    bVec x_bvec = bVec::loadu(x + d);
    fVec x_fvec0, x_fvec1;
    std::tie(x_fvec0, x_fvec1) = at::vec::convert_to_float(x_bvec);
    bVec w_bvec = bVec::loadu(w + d);
    fVec w_fvec0, w_fvec1;
    std::tie(w_fvec0, w_fvec1) = at::vec::convert_to_float(w_bvec);
    x_fvec0 = x_fvec0 * scale_fvec * w_fvec0;
    x_fvec1 = x_fvec1 * scale_fvec * w_fvec1;
    bVec out_bvec = convert_from_float_ext<scalar_t>(x_fvec0, x_fvec1);
    out_bvec.store(y + d);
  }
}

template <typename scalar_t>
void rms_norm_kernel_impl(
    scalar_t* __restrict__ input0,
    scalar_t* __restrict__ input1,
    const scalar_t* __restrict__ weight0,
    const scalar_t* __restrict__ weight1,
    int64_t M,
    int64_t N0,
    int64_t N1,
    int64_t stride1,
    float eps = 1e-5) {
  at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
    for (int64_t m = begin; m < end; ++m) {
      scalar_t* x0 = input0 + m * N0;
      scalar_t* x1 = input1 + m * stride1;
      float scale0 = reduce(x0, N0);
      float scale1 = reduce(x1, N1);
      scale0 = float(1) / std::sqrt(scale0 / N0 + eps);
      scale1 = float(1) / std::sqrt(scale1 / N1 + eps);
      map2(x0, x0, weight0, scale0, N0);
      map2(x1, x1, weight1, scale1, N1);
    }
  });
}

template <typename scalar_t>
inline void rotary(const scalar_t* input, scalar_t* out, const scalar_t* cos, const scalar_t* sin, int64_t size) {
  TORCH_CHECK(false, "rotary scalar path not implemented.");
}

#if defined(CPU_CAPABILITY_AVX512)
template <>
inline void rotary<at::BFloat16>(
    const at::BFloat16* input, at::BFloat16* out, const at::BFloat16* cos, const at::BFloat16* sin, int64_t size) {
  // permute indices
  const __m512i idx1 = _mm512_set_epi32(30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0);
  const __m512i idx2 = _mm512_set_epi32(31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1);
  const __m512i idy1 = _mm512_set_epi32(23, 7, 22, 6, 21, 5, 20, 4, 19, 3, 18, 2, 17, 1, 16, 0);
  const __m512i idy2 = _mm512_set_epi32(31, 15, 30, 14, 29, 13, 28, 12, 27, 11, 26, 10, 25, 9, 24, 8);

// rotary dim is 64, just 2 iters
#pragma GCC unroll 2
  for (int64_t d = 0; d < size; d += 32) {
    int64_t d2 = d >> 1;
    // load coefs
    __m512 vcos = CVT_BF16_TO_FP32(_mm256_loadu_si256(reinterpret_cast<const __m256i*>(cos + d2)));
    __m512 vsin = CVT_BF16_TO_FP32(_mm256_loadu_si256(reinterpret_cast<const __m256i*>(sin + d2)));
    // load input
    __m512i a16 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(input + d));
    __m512 a = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(a16, 0));
    __m512 b = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(a16, 1));
    // from [16, 2] to [2, 16]
    __m512 in1 = _mm512_mask_permutex2var_ps(a, 0xffff, idx1, b);
    __m512 in2 = _mm512_mask_permutex2var_ps(a, 0xffff, idx2, b);
    // out1 = in1 * cos - in2 * sin;
    // out2 = in2 * cos + in1 * sin
    __m512 out1 = _mm512_sub_ps(_mm512_mul_ps(in1, vcos), _mm512_mul_ps(in2, vsin));
    __m512 out2 = _mm512_add_ps(_mm512_mul_ps(in2, vcos), _mm512_mul_ps(in1, vsin));
    // from [2, 16] to [16, 2]
    a = _mm512_mask_permutex2var_ps(out1, 0xffff, idy1, out2);
    b = _mm512_mask_permutex2var_ps(out1, 0xffff, idy2, out2);

    _mm512_storeu_si512(reinterpret_cast<__m512i*>((out + d)), (__m512i)(_mm512_cvtne2ps_pbh(b, a)));
  }
}
#endif

template <typename scalar_t>
void rotary_emb_kernel_impl(
    scalar_t* q_pe_out,
    scalar_t* k_pe_out,
    const scalar_t* q_pe,
    const scalar_t* k_pe,
    const int64_t* pos,
    const scalar_t* cos_sin,
    int64_t num_seqs,
    int64_t num_heads,
    int64_t rotary_dim,
    int64_t q_strideB,
    int64_t q_strideH,
    int64_t k_strideB,
    int64_t oq_strideB,
    int64_t oq_strideH,
    int64_t ok_strideB) {
  TORCH_CHECK(rotary_dim % 32 == 0, "rotary_dim is not 32x.");
  const int64_t rotary_offset = rotary_dim / 2;

  // parallel on [num_seqs, num_heads + 1]
  // top [num_heads] handle q_pe and bottom [1] handle k_pe
  at::parallel_for(0, num_seqs * (num_heads + 1), GRAIN_SIZE / rotary_dim, [&](int64_t begin, int64_t end) {
    int64_t seq{0}, head_id{0};
    data_index_init(begin, seq, num_seqs, head_id, num_heads + 1);

    for (int64_t i = begin; i < end; ++i) {
      UNUSED(i);
      // get cos and sin cache ptr
      int64_t index = pos[seq];
      const scalar_t* cos = cos_sin + index * rotary_dim;
      const scalar_t* sin = cos + rotary_offset;

      const scalar_t* input =
          (head_id < num_heads) ? q_pe + seq * q_strideB + head_id * q_strideH : k_pe + seq * k_strideB;
      scalar_t* out =
          (head_id < num_heads) ? q_pe_out + seq * oq_strideB + head_id * oq_strideH : k_pe_out + seq * ok_strideB;
      rotary<scalar_t>(input, out, cos, sin, rotary_dim);

      // move to the next index
      data_index_step(seq, num_seqs, head_id, num_heads + 1);
    }
  });
}

}  // anonymous namespace

extern at::Tensor
blzheng's avatar
blzheng committed
311
weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2, const std::optional<at::Tensor>& bias, bool is_vnni);
312
313
314
315
316

extern at::Tensor int8_scaled_mm_with_quant(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
317
    const std::optional<at::Tensor>& bias,
318
319
320
321
    at::ScalarType out_dtype,
    bool is_vnni);

extern void
blzheng's avatar
blzheng committed
322
bmm_cpu(at::Tensor& out, at::Tensor& mat1, at::Tensor& mat2, bool is_vnni, const std::optional<at::Tensor>& scale);
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

// NB: shapes in DeepDeek R1
//
//   hidden_states    : [num_seqs, hidden_size] [1, 7168]
//   q_a_proj_weight  : [q_lora_rank, hidden_size] [1536, 7168]
//   q_b_proj_weight  : [num_heads * qk_head_dim, q_lora_rank] [4224, 1536]
//   kv_a_proj_weight : [kv_lora_rank + qk_rope_head_dim, hidden_size] [576, 7168]
//   w_kc             : [num_heads, kv_lora_rank, qk_nope_head_dim] [22, 512, 128]
//   q_a_layernorm_weight  : [q_lora_rank] [1536]
//   kv_a_layernorm_weight : [kv_lora_rank] [512]
//
std::tuple<at::Tensor, at::Tensor, at::Tensor> qkv_proj_with_rope(
    at::Tensor& hidden_states,
    at::Tensor& q_a_proj_weight,
    at::Tensor& q_b_proj_weight,
    at::Tensor& kv_a_proj_weight,
    at::Tensor& w_kc,
    at::Tensor& q_a_layernorm_weight,
    at::Tensor& kv_a_layernorm_weight,
    at::Tensor& positions,
    at::Tensor& cos_sin_cache,
    double eps,
    bool use_int8_w8a8,
blzheng's avatar
blzheng committed
346
347
348
    std::optional<at::Tensor> q_a_proj_scale,
    std::optional<at::Tensor> q_b_proj_scale,
    std::optional<at::Tensor> kv_a_proj_scale,
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    bool is_vnni) {
  RECORD_FUNCTION(
      "sgl-kernel::qkv_proj_with_rope",
      std::vector<c10::IValue>({hidden_states, q_a_proj_weight, q_b_proj_weight, kv_a_proj_weight, w_kc}));

  const auto st = hidden_states.scalar_type();
  CHECK_INPUT(hidden_states);
  CHECK_INPUT(positions);
  CHECK_INPUT(cos_sin_cache);
  CHECK_EQ(q_a_layernorm_weight.scalar_type(), st);
  CHECK_EQ(kv_a_layernorm_weight.scalar_type(), st);
  CHECK_EQ(positions.scalar_type(), at::kLong);
  CHECK_EQ(cos_sin_cache.scalar_type(), st);
  CHECK_DIM(2, hidden_states);
  CHECK_DIM(3, w_kc);
  CHECK_DIM(1, q_a_layernorm_weight);
  CHECK_DIM(1, kv_a_layernorm_weight);
  CHECK_DIM(1, positions);
  CHECK_DIM(2, cos_sin_cache);

  // skip contiguous checks for weights, expect prepacked
  TORCH_CHECK(is_vnni, "qkv_proj_with_rope: expect weights are prepacked!");

  int64_t num_seqs = hidden_states.size(0);
  int64_t hidden_size = hidden_states.size(1);
  int64_t q_lora_rank = q_a_proj_weight.size(0);
  int64_t num_heads = w_kc.size(0);
  int64_t kv_lora_rank = w_kc.size(1);
  int64_t qk_head_dim = q_b_proj_weight.size(0) / num_heads;
  int64_t qk_nope_head_dim = w_kc.size(2);
  int64_t qk_rope_head_dim = kv_a_proj_weight.size(0) - kv_lora_rank;
  int64_t rotary_dim = cos_sin_cache.size(1);

  CHECK_EQ(positions.numel(), num_seqs);
  CHECK_EQ(rotary_dim, qk_rope_head_dim);
  CHECK_EQ(q_a_layernorm_weight.numel(), q_lora_rank);
  CHECK_EQ(kv_a_layernorm_weight.numel(), kv_lora_rank);

  // check the packed dimension
  CHECK_EQ(q_a_proj_weight.size(1), get_row_size(hidden_size, use_int8_w8a8));
  CHECK_EQ(q_b_proj_weight.size(1), get_row_size(q_lora_rank, use_int8_w8a8));
  CHECK_EQ(kv_a_proj_weight.size(1), get_row_size(hidden_size, use_int8_w8a8));

  if (use_int8_w8a8) {
    TORCH_CHECK(q_a_proj_scale.has_value(), "missing q_a_proj_scale for int8 w8a8.");
    TORCH_CHECK(q_b_proj_scale.has_value(), "missing q_b_proj_scale for int8 w8a8.");
    TORCH_CHECK(kv_a_proj_scale.has_value(), "missing kv_a_proj_scale for int8 w8a8.");
  }

  // outputs and temp buffer
  const auto options = hidden_states.options();
  auto q_input = at::empty({num_seqs, num_heads, kv_lora_rank + qk_rope_head_dim}, options);
  auto k_input = at::empty({num_seqs, 1, kv_lora_rank + qk_rope_head_dim}, options);
  auto v_input = k_input.narrow(-1, 0, kv_lora_rank);

  // outputs of q_a_proj and q_b_proj
  auto qa = at::empty({num_seqs, q_lora_rank}, options);

  // stage 1: q_a_proj and kv_a_proj
  AT_DISPATCH_REDUCED_FLOATING_TYPES(st, "qkv_proj_kernel_impl", [&] {
    if (use_int8_w8a8) {
      auto q_a_proj_s = q_a_proj_scale.value();
      auto kv_a_proj_s = kv_a_proj_scale.value();
      TORCH_CHECK(q_a_proj_s.numel() == q_lora_rank);
      TORCH_CHECK(kv_a_proj_s.numel() == kv_lora_rank + qk_rope_head_dim);

      auto buffer = at::empty({num_seqs * hidden_size + num_seqs * 4}, options.dtype(at::kByte));
      uint8_t* __restrict__ Aq_data = buffer.data_ptr<uint8_t>();
      float* __restrict__ As_data = (float*)((void*)(Aq_data + num_seqs * hidden_size));
      const scalar_t* __restrict__ A_data = hidden_states.data_ptr<scalar_t>();

      at::parallel_for(0, num_seqs, 0, [&](int64_t begin, int64_t end) {
        for (int64_t m = begin; m < end; ++m) {
          quantize_row_int8<scalar_t>(Aq_data + m * hidden_size, As_data[m], A_data + m * hidden_size, hidden_size);
        }
      });

      segment_gemm_kernel_impl<scalar_t>(
          qa.data_ptr<scalar_t>(),
          k_input.data_ptr<scalar_t>(),
          Aq_data,
          q_a_proj_weight.data_ptr<int8_t>(),
          kv_a_proj_weight.data_ptr<int8_t>(),
          As_data,
          q_a_proj_s.data_ptr<float>(),
          kv_a_proj_s.data_ptr<float>(),
          num_seqs,
          q_lora_rank,
          kv_lora_rank + qk_rope_head_dim,
          hidden_size);
    } else {
      segment_gemm_kernel_impl<scalar_t>(
          qa.data_ptr<scalar_t>(),
          k_input.data_ptr<scalar_t>(),
          hidden_states.data_ptr<scalar_t>(),
          q_a_proj_weight.data_ptr<scalar_t>(),
          kv_a_proj_weight.data_ptr<scalar_t>(),
          num_seqs,
          q_lora_rank,
          kv_lora_rank + qk_rope_head_dim,
          hidden_size);
    }
  });

  // stage 2: apply rmsnorm inplace
  AT_DISPATCH_REDUCED_FLOATING_TYPES(st, "rms_norm_kernel_impl", [&] {
    rms_norm_kernel_impl<scalar_t>(
        qa.data_ptr<scalar_t>(),
        v_input.data_ptr<scalar_t>(),
        q_a_layernorm_weight.data_ptr<scalar_t>(),
        kv_a_layernorm_weight.data_ptr<scalar_t>(),
        num_seqs,
        q_lora_rank,
        kv_lora_rank,
        kv_lora_rank + qk_rope_head_dim,
        eps);
  });

  // stage 3: q_b_proj
  at::Tensor qb;
  std::optional<at::Tensor> bias;
  if (use_int8_w8a8) {
    qb = int8_scaled_mm_with_quant(qa, q_b_proj_weight, q_b_proj_scale.value(), bias, at::kBFloat16, is_vnni);
  } else {
    qb = weight_packed_linear(qa, q_b_proj_weight, bias, is_vnni);
  }
  qb.as_strided_({num_seqs, num_heads, qk_head_dim}, {num_heads * qk_head_dim, qk_head_dim, 1});

  // stage 4: bmm
  std::optional<at::Tensor> scale;
  auto q_nope = qb.narrow(2, 0, qk_nope_head_dim).transpose_(0, 1);
  auto q_nope_out = q_input.narrow(2, 0, kv_lora_rank).transpose_(0, 1);
  bmm_cpu(q_nope_out, q_nope, w_kc, is_vnni, scale);

  // stage 5: rope
  AT_DISPATCH_REDUCED_FLOATING_TYPES(st, "rotary_emb_kernel_impl", [&] {
    rotary_emb_kernel_impl<scalar_t>(
        q_input.data_ptr<scalar_t>() + kv_lora_rank,
        k_input.data_ptr<scalar_t>() + kv_lora_rank,
        qb.data_ptr<scalar_t>() + qk_nope_head_dim,
        k_input.data_ptr<scalar_t>() + kv_lora_rank,
        positions.data_ptr<int64_t>(),
        cos_sin_cache.data_ptr<scalar_t>(),
        num_seqs,
        num_heads,
        rotary_dim,
        num_heads * qk_head_dim,
        qk_head_dim,
        kv_lora_rank + qk_rope_head_dim,
        num_heads * (kv_lora_rank + qk_rope_head_dim),
        kv_lora_rank + qk_rope_head_dim,
        kv_lora_rank + qk_rope_head_dim);
  });

  return std::make_tuple(q_input, k_input, v_input);
}