gemm_int8.cpp 15.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include "common.h"
#include "gemm.h"
#include "vec.h"

namespace {

template <typename scalar_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
  static inline void apply(
      const uint8_t* __restrict__ A,
      const int8_t* __restrict__ B,
      scalar_t* __restrict__ C,
      const float* __restrict__ As,
      const float* __restrict__ Bs,
      const int32_t* __restrict__ Bcomp,
      const float* __restrict__ bias,
      int64_t K,
      int64_t lda,
      int64_t ldb,
      int64_t ldc) {
    TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
  }
};

#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
  static inline void apply(
      const uint8_t* __restrict__ A,
      const int8_t* __restrict__ B,
      at::BFloat16* __restrict__ C,
      const float* __restrict__ As,
      const float* __restrict__ Bs,
      const int32_t* __restrict__ Bcomp,
      const float* __restrict__ bias,
      int64_t K,
      int64_t lda,
      int64_t ldb,
      int64_t ldc) {
    constexpr int ROWS = BLOCK_M;
    constexpr int COLS = BLOCK_N / 16;
    static_assert(COLS % 2 == 0);

    // prefetch distance
    constexpr int PREFETCH_SIZE_K = 0;

    __m512i va;
    __m512i vb[COLS];
    __m512i vc[ROWS * COLS];
    __m512i vcomp[COLS];
    __m512 vd0;
    __m512 vd1[COLS];

54
    // oops! 4x4 spills but we use 4x2
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    __m512 vbias[COLS];

    // [NOTE]: s8s8 igemm compensation in avx512-vnni
    //
    // avx512-vnni has no s8s8, so we need to change s8s8 to u8s8 with compensate:
    //
    //   a * b = (a + 128) * b - 128 * b
    //   s   s       u       s    u    s
    //
    // 1) 128 * b is pre-computed when packing B to vnni formats
    // 2) a + 128 is fused when dynamically quantize A
    //
    auto loadc = [&](auto i) { vc[i] = _mm512_set1_epi32(0); };
    Unroll<ROWS * COLS>{}(loadc);

    const int64_t K4 = K >> 2;
    const int64_t lda4 = lda >> 2;
    const int64_t ldb4 = ldb;  // ldb * 4 >> 2;
    const int32_t* a_ptr = reinterpret_cast<const int32_t*>(A);
    const int32_t* b_ptr = reinterpret_cast<const int32_t*>(B);

    auto compute = [&](auto i, int64_t k) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      if constexpr (col == 0) {
        va = _mm512_set1_epi32(a_ptr[row * lda4 + k]);
      }
      if constexpr (row == 0) {
        vb[col] = _mm512_loadu_si512(b_ptr + k * ldb4 + col * 16);
        if constexpr (PREFETCH_SIZE_K > 0) {
          _mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb4 + col * 16, _MM_HINT_T0);
        }
      }
      vc[i] = _mm512_dpbusd_epi32(vc[i], va, vb[col]);
    };
    for (int64_t k = 0; k < K4; ++k) {
      Unroll<ROWS * COLS>{}(compute, k);
    }

    auto storec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      // load a scale
      if constexpr (col == 0) {
        vd0 = _mm512_set1_ps(As[row]);
      }
      // load b scale and vcomp per 2 vectors
      // also load bias if any
      if constexpr (row == 0) {
        if constexpr (col % 2 == 0) {
          vd1[col + 0] = _mm512_loadu_ps(Bs + col * 16);
          vd1[col + 1] = _mm512_loadu_ps(Bs + col * 16 + 16);
          vcomp[col + 0] = _mm512_loadu_si512(Bcomp + col * 16);
          vcomp[col + 1] = _mm512_loadu_si512(Bcomp + col * 16 + 16);
          if constexpr (has_bias) {
            vbias[col + 0] = _mm512_loadu_ps(bias + col * 16);
            vbias[col + 1] = _mm512_loadu_ps(bias + col * 16 + 16);
          }
        }
      }

      // for COLS = 2, 4 use 512bit store
      if constexpr (col % 2 == 0) {
        __m512 vc0 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[row * COLS + col + 0], vcomp[col + 0]));
        __m512 vc1 = _mm512_cvtepi32_ps(_mm512_sub_epi32(vc[row * COLS + col + 1], vcomp[col + 1]));
        if constexpr (has_bias) {
          vc0 = _mm512_fmadd_ps(_mm512_mul_ps(vc0, vd0), vd1[col + 0], vbias[col + 0]);
          vc1 = _mm512_fmadd_ps(_mm512_mul_ps(vc1, vd0), vd1[col + 1], vbias[col + 1]);
        } else {
          vc0 = _mm512_mul_ps(_mm512_mul_ps(vc0, vd0), vd1[col + 0]);
          vc1 = _mm512_mul_ps(_mm512_mul_ps(vc1, vd0), vd1[col + 1]);
        }

        _mm512_storeu_si512(
            reinterpret_cast<__m512i*>((C + row * ldc + col * 16)), (__m512i)(_mm512_cvtne2ps_pbh(vc1, vc0)));
      }
    };
    Unroll<ROWS * COLS>{}(storec);
  }
};
#endif

#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE)                \
  tinygemm_kernel_nn<scalar_t, has_bias, MB_SIZE, NB_SIZE>::apply( \
      A + mb_start * lda,                                          \
      B + nb_start * 4,                                            \
      C + mb_start * ldc + nb_start,                               \
      As + mb_start,                                               \
      Bs + nb_start,                                               \
      Bcomp + nb_start,                                            \
      has_bias ? bias + nb_start : nullptr,                        \
      K,                                                           \
      lda,                                                         \
      ldb,                                                         \
      ldc);

template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
    const uint8_t* __restrict__ A,
    const int8_t* __restrict__ B,
    scalar_t* __restrict__ C,
    int32_t* __restrict__ Ctmp,
    const float* __restrict__ As,
    const float* __restrict__ Bs,
    const float* __restrict__ bias,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    bool brg) {
  // B compensation
  const int32_t* Bcomp = reinterpret_cast<const int32_t*>(B + block_size_n() * K);

  // pattern: 1-4-16
  constexpr int64_t BLOCK_M = 4;
  constexpr int64_t BLOCK_N = 64;
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);
  for (int64_t mb = 0; mb < MB; ++mb) {
    int64_t mb_start = mb * BLOCK_M;
    int64_t mb_size = std::min(BLOCK_M, M - mb_start);
    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (mb_size << 4 | nb_size >> 4) {
        // mb_size = 1
        case 0x12:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 32);
          break;
        case 0x14:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 64);
          break;
        // mb_size = 2
        case 0x22:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 32);
          break;
        case 0x24:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 64);
          break;
        // mb_size = 3
        case 0x32:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 32);
          break;
        case 0x34:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 64);
          break;
        // mb_size = 4
        case 0x42:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 32);
          break;
        case 0x44:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 64);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
      }
    }
  }
}

template <typename scalar_t>
void int8_scaled_mm_kernel_impl(
    scalar_t* __restrict__ out,
    const uint8_t* __restrict__ mat1,
    const int8_t* __restrict__ mat2,
    const float* __restrict__ scales1,
    const float* __restrict__ scales2,
    const float* __restrict__ bias,
    int64_t M,
    int64_t N,
    int64_t K) {
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);

  // TODO: brgemm u8s8 depends on PyTorch 2.7 release.
  const bool use_brgemm = false;

  // K + 4 after compensation
  const int64_t packed_row_size = get_row_size<int8_t>(K);

  AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
    at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
      int64_t mb{0}, nb{0};
      data_index_init(begin, mb, MB, nb, NB);

      // for brgemm, use int32_t for accumulate
      alignas(64) int32_t Ctmp[BLOCK_M * BLOCK_N];

      for (int i = begin; i < end; ++i) {
        UNUSED(i);
        int mb_start = mb * BLOCK_M;
        int mb_size = std::min(M - mb_start, BLOCK_M);
        int nb_start = nb * BLOCK_N;
        int nb_size = std::min(N - nb_start, BLOCK_N);

        tinygemm_kernel<scalar_t, has_bias>(
            /*   A */ mat1 + mb_start * K,
            /*   B */ mat2 + nb_start * packed_row_size /* nb * BLOCK_N * (K + 4) */,
            /*   C */ out + mb_start * N + nb_start,
            /* Ctmp*/ Ctmp,
            /*  As */ scales1 + mb_start,
            /*  Bs */ scales2 + nb_start,
            /* bias*/ bias + nb_start,
            /*   M */ mb_size,
            /*   N */ nb_size,
            /*   K */ K,
            /* lda */ K,
            /* ldb */ nb_size,
            /* ldc */ N,
            /* brg */ use_brgemm);

        // move to the next index
        data_index_step(mb, MB, nb, NB);
      }

      if (use_brgemm) {
        at::native::cpublas::brgemm_release();
      }
    });
  });
}

}  // anonymous namespace

// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
    const uint8_t* __restrict__ A,
    const int8_t* __restrict__ B,
    scalar_t* __restrict__ C,
    int32_t* __restrict__ Ctmp,
    const float* __restrict__ As,
    const float* __restrict__ Bs,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    bool brg) {
  tinygemm_kernel<scalar_t, false>(A, B, C, Ctmp, As, Bs, nullptr, M, N, K, lda, ldb, ldc, brg);
}

#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE) \
  template void tinygemm_kernel<TYPE>(      \
      const uint8_t* __restrict__ A,        \
      const int8_t* __restrict__ B,         \
      TYPE* __restrict__ C,                 \
      int32_t* __restrict__ Ctmp,           \
      const float* __restrict__ As,         \
      const float* __restrict__ Bs,         \
      int64_t M,                            \
      int64_t N,                            \
      int64_t K,                            \
      int64_t lda,                          \
      int64_t ldb,                          \
      int64_t ldc,                          \
      bool brg)

INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);

std::tuple<at::Tensor, at::Tensor> per_token_quant_int8_cpu(at::Tensor& A) {
  RECORD_FUNCTION("sgl-kernel::per_token_quant_int8_cpu", std::vector<c10::IValue>({A}));

  CHECK_LAST_DIM_CONTIGUOUS_INPUT(A);
  CHECK_DIM(2, A);

  int64_t M = A.size(0);
  int64_t K = A.size(1);
  int64_t lda = A.stride(0);

  const auto st = A.scalar_type();
  TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf, "per_token_quant_int8: expect A to be bfloat16 or half.");

  auto Aq = at::empty({M, K}, A.options().dtype(at::kByte));
  auto As = at::empty({M}, A.options().dtype(at::kFloat));

  AT_DISPATCH_REDUCED_FLOATING_TYPES(st, "per_token_quant_int8", [&] {
    uint8_t* __restrict__ Aq_data = Aq.data_ptr<uint8_t>();
    float* __restrict__ As_data = As.data_ptr<float>();
    const scalar_t* __restrict__ A_data = A.data_ptr<scalar_t>();

    at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
      for (int64_t m = begin; m < end; ++m) {
        quantize_row_int8<scalar_t>(Aq_data + m * K, As_data[m], A_data + m * lda, K);
      }
    });
  });
  return std::make_tuple(Aq, As);
}

// weight     :  static, per-channel, symmetric
// activation : dynamic,   per-token, symmetric
//
// mat1    : [M, K]
// mat2    : [N, K]
// scales1 : [M]
// scales2 : [N]
// bias    : [N]
// out     : [M, N]
//
at::Tensor int8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales1,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
369
    const std::optional<at::Tensor>& bias,
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    at::ScalarType out_dtype,
    bool is_vnni) {
  RECORD_FUNCTION("sgl-kernel::int8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales1, scales2, bias}));

  auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);

  CHECK_INPUT(mat1);
  CHECK_INPUT(mat2);
  CHECK_INPUT(scales1);
  CHECK_INPUT(scales2);
  CHECK_DIM(2, mat1);
  CHECK_DIM(2, mat2);

  int64_t M = mat1.size(0);
  int64_t N = mat2.size(0);
  int64_t K = mat1.size(1);

  // see [NOTE]: s8s8 igemm compensation in avx512-vnni
  CHECK_EQ(mat2.size(1), (int64_t)(is_vnni ? K + sizeof(int32_t) : K));
  CHECK_EQ(scales1.numel(), M);
  CHECK_EQ(scales2.numel(), N);

  TORCH_CHECK(mat1.scalar_type() == at::kByte, "int8_scaled_mm: expect mat1 to be uint8.");
  TORCH_CHECK(mat2.scalar_type() == at::kChar, "int8_scaled_mm: expect mat2 to be int8.");
  TORCH_CHECK(
      scales1.scalar_type() == at::kFloat && scales2.scalar_type() == at::kFloat,
      "int8_scaled_mm: expect scales to be float32.");

  auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));

  const bool has_bias = bias.has_value();
  const float* bias_data = nullptr;
  if (has_bias) {
    CHECK_EQ(bias.value().size(0), N);
    bias_data = bias.value().data_ptr<float>();
  }

  AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "int8_scaled_mm_kernel_impl", [&] {
    int8_scaled_mm_kernel_impl<scalar_t>(
        out.data_ptr<scalar_t>(),
        mat1.data_ptr<uint8_t>(),
        packed_w.data_ptr<int8_t>(),
        scales1.data_ptr<float>(),
        scales2.data_ptr<float>(),
        bias_data,
        M,
        N,
        K);
  });
  return out;
}

// fused `per_token_quant_int8_cpu` and `int8_scaled_mm_cpu`
at::Tensor int8_scaled_mm_with_quant(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
427
    const std::optional<at::Tensor>& bias,
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    at::ScalarType out_dtype,
    bool is_vnni) {
  RECORD_FUNCTION("sgl-kernel::int8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales2, bias}));

  auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);

  CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
  CHECK_INPUT(mat2);
  CHECK_INPUT(scales2);
  CHECK_DIM(2, mat1);
  CHECK_DIM(2, mat2);

  int64_t M = mat1.size(0);
  int64_t N = mat2.size(0);
  int64_t K = mat1.size(1);
  int64_t lda = mat1.stride(0);

  // see [NOTE]: s8s8 igemm compensation in avx512-vnni
  CHECK_EQ(mat2.size(1), (int64_t)(is_vnni ? K + sizeof(int32_t) : K));
  CHECK_EQ(scales2.numel(), N);

  const auto st = mat1.scalar_type();
  TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf, "int8_scaled_mm_with_quant: expect A to be bfloat16 or half.");
  TORCH_CHECK(st == out_dtype, "int8_scaled_mm_with_quant: expect A has same dtype with out_dtype.");
  TORCH_CHECK(mat2.scalar_type() == at::kChar, "int8_scaled_mm_with_quant: expect mat2 to be int8.");
  TORCH_CHECK(scales2.scalar_type() == at::kFloat, "int8_scaled_mm_with_quant: expect scales to be float32.");

  const int64_t buffer_size = M * K + M * sizeof(float);
  auto buffer = at::empty({buffer_size}, mat1.options().dtype(at::kByte));
  auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));

  const bool has_bias = bias.has_value();
  const float* bias_data = nullptr;
  if (has_bias) {
    CHECK_EQ(bias.value().size(0), N);
    bias_data = bias.value().data_ptr<float>();
  }

  AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "int8_scaled_mm_with_quant_kernel_impl", [&] {
    uint8_t* __restrict__ Aq_data = buffer.data_ptr<uint8_t>();
    float* __restrict__ As_data = (float*)((void*)(Aq_data + M * K));
    const scalar_t* __restrict__ A_data = mat1.data_ptr<scalar_t>();

    at::parallel_for(0, M, 0, [&](int64_t begin, int64_t end) {
      for (int64_t m = begin; m < end; ++m) {
        quantize_row_int8<scalar_t>(Aq_data + m * K, As_data[m], A_data + m * lda, K);
      }
    });

    int8_scaled_mm_kernel_impl<scalar_t>(
        out.data_ptr<scalar_t>(),
        Aq_data,
        packed_w.data_ptr<int8_t>(),
        As_data,
        scales2.data_ptr<float>(),
        bias_data,
        M,
        N,
        K);
  });
  return out;
}