gemm_fp8.cpp 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#include "common.h"
#include "gemm.h"
#include "vec.h"

namespace {

template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ input, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();

  int64_t d;
#pragma GCC unroll 4
  for (d = 0; d <= size - kVecSize; d += kVecSize) {
    fVec data0 = fVec::loadu(input + d);
    fVec data1 = fVec::loadu(input + d + fVec::size());
    bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
    out_vec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(input[d]);
  }
}

template <typename scalar_t>
inline void copy_add_stub(
    scalar_t* __restrict__ out, const float* __restrict__ input, const float* __restrict__ bias, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  constexpr int kVecSize = bVec::size();

  int64_t d;
#pragma GCC unroll 4
  for (d = 0; d <= size - kVecSize; d += kVecSize) {
    fVec data0 = fVec::loadu(input + d) + fVec::loadu(bias + d);
    fVec data1 = fVec::loadu(input + d + fVec::size()) + fVec::loadu(bias + d + fVec::size());
    bVec out_vec = convert_from_float_ext<scalar_t>(data0, data1);
    out_vec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(input[d] + bias[d]);
  }
}

inline void unpack_B(
    at::BFloat16* __restrict__ Btmp,
    const at::Float8_e4m3fn* __restrict__ packed_B,
    int N,
    int K,
    int ldb,
    int ldb_tmp,
    float scale) {
#if defined(CPU_CAPABILITY_AVX512)
  // [K/2, N, 2]
  const int K2 = K >> 1;
  const int ldb2 = ldb;  // ldb * 2 >> 1;
  const uint16_t* b_ptr = reinterpret_cast<const uint16_t*>(packed_B);
  const __m512 vd = _mm512_set1_ps(scale);

  constexpr int BLOCK_N = block_size_n();
  static_assert(BLOCK_N == 32);

  for (int k = 0; k < K2; ++k) {
    for (int n = 0; n < N; n += 64) {  // BLOCK_N = 32
      __m512i b8 = _mm512_loadu_si512(b_ptr + k * ldb2 + n);

      __m256i b8_0 = _mm512_extracti32x8_epi32(b8, 0);
      __m256i b8_1 = _mm512_extracti32x8_epi32(b8, 1);

      __m512bh bf16_0 = CVT_FP8_TO_BF16(b8_0);
      __m512bh bf16_1 = CVT_FP8_TO_BF16(b8_1);

      // Apply scale
      __m512 f0_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 0));
      __m512 f0_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 1));
      __m512 f1_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 0));
      __m512 f1_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 1));

      f0_lo = _mm512_mul_ps(f0_lo, vd);
      f0_hi = _mm512_mul_ps(f0_hi, vd);
      f1_lo = _mm512_mul_ps(f1_lo, vd);
      f1_hi = _mm512_mul_ps(f1_hi, vd);

      bf16_0 = _mm512_cvtne2ps_pbh(f0_hi, f0_lo);
      bf16_1 = _mm512_cvtne2ps_pbh(f1_hi, f1_lo);

      _mm512_storeu_si512(Btmp + k * ldb_tmp * 2 + n * 2 + 0, (__m512i)bf16_0);
      _mm512_storeu_si512(Btmp + k * ldb_tmp * 2 + n * 2 + 32, (__m512i)bf16_1);
    }
  }
#else
  TORCH_CHECK(false, "unpack_B: scalar path not implemented!");
#endif
}

template <typename scalar_t, typename packed_t, bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
  static inline void apply(
      const scalar_t* __restrict__ A,
      const packed_t* __restrict__ B,
      scalar_t* __restrict__ C,
      const float* __restrict__ bias,
      const float* __restrict__ scale,
      int K,
      int lda,
      int ldb,
      int ldc,
      int64_t block_size_K) {
    TORCH_CHECK(false, "tinygemm_kernel_nn: scalar path not implemented!");
  }
};

#if defined(CPU_CAPABILITY_AVX512)
template <bool has_bias, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, at::Float8_e4m3fn, has_bias, BLOCK_M, BLOCK_N> {
  static inline void apply(
      const at::BFloat16* __restrict__ A,
      const at::Float8_e4m3fn* __restrict__ B,
      at::BFloat16* __restrict__ C,
      const float* __restrict__ bias,
      const float* __restrict__ scale,
      int K,
      int lda,
      int ldb,
      int ldc,
      int64_t block_size_K) {
    constexpr int ROWS = BLOCK_M;
    constexpr int COLS = BLOCK_N / 16;

    // prefetch distance
    constexpr int PREFETCH_SIZE_K = 0;

    __m512bh va;
    __m512bh vb[COLS];
    __m512 vc[ROWS * COLS];

    auto loadc = [&](auto i) {
      constexpr int col = i % COLS;
      if constexpr (has_bias) {
        vc[i] = _mm512_loadu_ps(bias + col * 16);
      } else {
        vc[i] = _mm512_set1_ps(0.f);
      }
    };
    Unroll<ROWS * COLS>{}(loadc);

    const int K2 = K >> 1;
    const int lda2 = lda >> 1;
    const int ldb2 = ldb;  // ldb * 2 >> 1;
    const float* a_ptr = reinterpret_cast<const float*>(A);
    const uint16_t* b_ptr = reinterpret_cast<const uint16_t*>(B);

    auto compute = [&](auto i, int k) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      int idx = k * 2 / block_size_K;
      const __m512 vd = _mm512_set1_ps(scale[idx]);

      if constexpr (col == 0) {
        va = (__m512bh)(_mm512_set1_ps(a_ptr[row * lda2 + k]));
      }
      if constexpr (row == 0) {
        if constexpr (col % 2 == 0) {
          __m512i b8 = _mm512_loadu_si512(b_ptr + k * ldb2 + col * 16);
          if constexpr (PREFETCH_SIZE_K > 0) {
            _mm_prefetch(b_ptr + (k + PREFETCH_SIZE_K) * ldb2 + col * 16, _MM_HINT_T0);
          }

          __m256i b8_0 = _mm512_extracti32x8_epi32(b8, 0);
          __m256i b8_1 = _mm512_extracti32x8_epi32(b8, 1);

          __m512bh bf16_0 = CVT_FP8_TO_BF16(b8_0);
          __m512bh bf16_1 = CVT_FP8_TO_BF16(b8_1);

          // Apply scale
          __m512 f0_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 0));
          __m512 f0_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_0, 1));
          __m512 f1_lo = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 0));
          __m512 f1_hi = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32((__m512i)bf16_1, 1));

          f0_lo = _mm512_mul_ps(f0_lo, vd);
          f0_hi = _mm512_mul_ps(f0_hi, vd);
          f1_lo = _mm512_mul_ps(f1_lo, vd);
          f1_hi = _mm512_mul_ps(f1_hi, vd);

          vb[col + 0] = _mm512_cvtne2ps_pbh(f0_hi, f0_lo);
          vb[col + 1] = _mm512_cvtne2ps_pbh(f1_hi, f1_lo);
        }
      }
      vc[i] = _mm512_dpbf16_ps(vc[i], va, vb[col]);
    };
    for (int k = 0; k < K2; ++k) {
      Unroll<ROWS * COLS>{}(compute, k);
    }

    auto storec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;
      // for COLS = 1, 3 use 256bit store
      // for COLS = 2, 4 use 512bit store
      if constexpr (COLS % 2 == 0) {
        if constexpr (col % 2 == 0) {
          _mm512_storeu_si512(
              reinterpret_cast<__m512i*>((C + row * ldc + col * 16)),
              (__m512i)(_mm512_cvtne2ps_pbh(vc[row * COLS + col + 1], vc[row * COLS + col])));
        }
      } else {
        _mm256_storeu_si256(reinterpret_cast<__m256i*>(C + row * ldc + col * 16), (__m256i)(_mm512_cvtneps_pbh(vc[i])));
      }
    };
    Unroll<ROWS * COLS>{}(storec);
  }
};
#endif

#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE)                                   \
  tinygemm_kernel_nn<scalar_t, at::Float8_e4m3fn, has_bias, MB_SIZE, NB_SIZE>::apply( \
      A + mb_start * lda,                                                             \
      B + nb_start * 2,                                                               \
      C + mb_start * ldc + nb_start,                                                  \
      has_bias ? bias + nb_start : nullptr,                                           \
      scale,                                                                          \
      K,                                                                              \
      lda,                                                                            \
      ldb,                                                                            \
      ldc,                                                                            \
      block_size_K);

template <typename scalar_t, typename packed_t, bool has_bias>
struct brgemm {
  static inline void apply(
      const scalar_t* __restrict__ A,
      const packed_t* __restrict__ B,
      scalar_t* __restrict__ C,
      scalar_t* __restrict__ Btmp,
      float* __restrict__ Ctmp,
      const float* __restrict__ bias,
      const float* __restrict__ scale,
      int M,
      int N,
      int K,
      int lda,
      int ldb,
      int ldc) {
    TORCH_CHECK(false, "struct brgemm: primary template not implemented!");
  }
};

template <bool has_bias>
struct brgemm<at::BFloat16, at::Float8_e4m3fn, has_bias> {
  static inline void apply(
      const at::BFloat16* __restrict__ A,
      const at::Float8_e4m3fn* __restrict__ B,
      at::BFloat16* __restrict__ C,
      at::BFloat16* __restrict__ Btmp,
      float* __restrict__ Ctmp,
      const float* __restrict__ bias,
      const float* __restrict__ scale,
      int M,
      int N,
      int K,
      int lda,
      int ldb,
      int ldc) {
    constexpr int BLOCK_N = block_size_n();

    // [BLOCK_K, BLOCK_N] -> [BLOCK_K / 2, BLOCK_N * 2]
    const int ldb_tmp = block_size_n();

    static_assert(BLOCK_K == 128);

    // accumulate across K per BLOCK_K
    for (int k = 0; k < K; k += BLOCK_K) {
      int kb_size = std::min(BLOCK_K, K - k);

      int idx = k >> 7;  // k / BLOCK_K where BLOCK_K = 128
      unpack_B(Btmp, B + k * ldb, N, kb_size, ldb, ldb_tmp, scale[idx]);

      const bool add_C = (k != 0);
      at::native::cpublas::brgemm(M, N, kb_size, lda, ldb_tmp, BLOCK_N, add_C, A + k, Btmp, Ctmp);
    }

    // copy from Ctmp to C
    for (int m = 0; m < M; ++m) {
      if constexpr (has_bias) {
        copy_add_stub(C + m * ldc, Ctmp + m * BLOCK_N, bias, N);
      } else {
        copy_stub(C + m * ldc, Ctmp + m * BLOCK_N, N);
      }
    }
  }
};

template <typename scalar_t, bool has_bias>
void tinygemm_kernel(
    const scalar_t* __restrict__ A,
    const at::Float8_e4m3fn* __restrict__ B,
    scalar_t* __restrict__ C,
    scalar_t* __restrict__ Btmp,
    float* __restrict__ Ctmp,
    const float* __restrict__ scale,
    const float* __restrict__ bias,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    bool brg,
    int64_t block_size_K) {
  if (brg) {
    brgemm<scalar_t, at::Float8_e4m3fn, has_bias>::apply(A, B, C, Btmp, Ctmp, bias, scale, M, N, K, lda, ldb, ldc);
    return;
  }

  // pattern: 1-4-16
  constexpr int64_t BLOCK_M = 4;
  constexpr int64_t BLOCK_N = 64;
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);
  for (int mb = 0; mb < MB; ++mb) {
    int64_t mb_start = mb * BLOCK_M;
    int64_t mb_size = std::min(BLOCK_M, M - mb_start);
    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (mb_size << 4 | nb_size >> 4) {
        // mb_size = 1
        case 0x12:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 32);
          break;
        case 0x14:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 64);
          break;
        // mb_size = 2
        case 0x22:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 32);
          break;
        case 0x24:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 64);
          break;
        // mb_size = 3
        case 0x32:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 32);
          break;
        case 0x34:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 64);
          break;
        // mb_size = 4
        case 0x42:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 32);
          break;
        case 0x44:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 64);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
      }
    }
  }
}

template <typename scalar_t>
void fp8_scaled_mm_kernel_impl(
    scalar_t* __restrict__ out,
    const scalar_t* __restrict__ mat1,
    const at::Float8_e4m3fn* __restrict__ mat2,
    const float* __restrict__ scales2,
    const float* __restrict__ bias,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t mat1_strideM,
    int64_t out_strideM,
    int64_t block_size_N,
    int64_t block_size_K) {
  constexpr int64_t BLOCK_M = block_size_m();
  constexpr int64_t BLOCK_N = block_size_n();
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);

  const int64_t scale_size_K = div_up(K, block_size_K);
  const int64_t blocks_n_per_group = block_size_N / BLOCK_N;

  const bool use_brgemm = can_use_brgemm<at::Float8_e4m3fn>(M);

  // parallel on [MB, NB]
  AT_DISPATCH_BOOL(bias != nullptr, has_bias, [&] {
    at::parallel_for(0, MB * NB, 0, [&](int64_t begin, int64_t end) {
      int64_t mb{0}, nb{0};
      data_index_init(begin, mb, MB, nb, NB);

      // for brgemm, use float32 for accumulate
      alignas(64) float Ctmp[BLOCK_M * BLOCK_N];
      // for brgemm when mat2 is float8_e4m3
      alignas(64) scalar_t Btmp[BLOCK_N * BLOCK_K];

      for (int64_t i = begin; i < end; ++i) {
        UNUSED(i);
        const float* scale_ptr = scales2 + (nb / blocks_n_per_group) * scale_size_K;

        int64_t mb_start = mb * BLOCK_M;
        int64_t mb_size = std::min(M - mb_start, BLOCK_M);
        int64_t nb_start = nb * BLOCK_N;
        int64_t nb_size = std::min(N - nb_start, BLOCK_N);

        tinygemm_kernel<scalar_t, has_bias>(
            /*   A            */ mat1 + mb_start * mat1_strideM,
            /*   B            */ mat2 + nb_start * K,  // nb * BLOCK_N * K
            /*   C            */ out + mb_start * out_strideM + nb_start,
            /*   Btmp         */ Btmp,
            /*   Ctmp         */ Ctmp,
            /*   scale        */ scale_ptr,
            /*   bias         */ bias + nb_start,
            /*   M            */ mb_size,
            /*   N            */ nb_size,
            /*   K            */ K,
            /*   lda          */ mat1_strideM,
            /*   ldb          */ nb_size,
            /*   ldc          */ out_strideM,
            /*   brg          */ use_brgemm,
            /*   block_size_K */ block_size_K);

        // move to the next index
        data_index_step(mb, MB, nb, NB);
      }

      if (use_brgemm) {
        at::native::cpublas::brgemm_release();
      }
    });
  });
}

}  // anonymous namespace

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
    const scalar_t* __restrict__ A,
    const at::Float8_e4m3fn* __restrict__ B,
    scalar_t* __restrict__ C,
    scalar_t* __restrict__ Btmp,
    float* __restrict__ Ctmp,
    const float* __restrict__ scale,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    bool brg,
    int64_t block_size_K) {
  tinygemm_kernel<scalar_t, false>(A, B, C, Btmp, Ctmp, scale, nullptr, M, N, K, lda, ldb, ldc, brg, block_size_K);
}

#define INSTANTIATE_TINYGEMM_TEMPLATE(TYPE)    \
  template void tinygemm_kernel<TYPE>(         \
      const TYPE* __restrict__ A,              \
      const at::Float8_e4m3fn* __restrict__ B, \
      TYPE* __restrict__ C,                    \
      TYPE* __restrict__ Btmp,                 \
      float* __restrict__ Ctmp,                \
      const float* __restrict__ scale,         \
      int64_t M,                               \
      int64_t N,                               \
      int64_t K,                               \
      int64_t lda,                             \
      int64_t ldb,                             \
      int64_t ldc,                             \
      bool brg,                                \
      int64_t block_size_K)

INSTANTIATE_TINYGEMM_TEMPLATE(at::BFloat16);
INSTANTIATE_TINYGEMM_TEMPLATE(at::Half);

480
481
482
483
484
at::Tensor fp8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
    std::vector<int64_t> block_size,
blzheng's avatar
blzheng committed
485
    const std::optional<at::Tensor>& bias,
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    at::ScalarType out_dtype,
    bool is_vnni) {
  RECORD_FUNCTION("sgl-kernel::fp8_scaled_mm_cpu", std::vector<c10::IValue>({mat1, mat2, scales2, block_size, bias}));

  auto packed_w = is_vnni ? mat2 : convert_weight_packed(mat2);

  CHECK_LAST_DIM_CONTIGUOUS_INPUT(mat1);
  CHECK_INPUT(mat2);
  CHECK_INPUT(scales2);
  TORCH_CHECK(scales2.scalar_type() == at::kFloat, "fp8_scaled_mm_cpu: expect scales2 to be float32.");

  int64_t M = mat1.size(0);
  int64_t N = mat2.size(0);
  int64_t K = mat2.size(1);

  CHECK_EQ(mat1.size(1), K);
  CHECK_DIM(2, mat1);
  CHECK_DIM(2, mat2);

  TORCH_CHECK(block_size.size() == 2, "fp8_scaled_mm_cpu: expect block_size.size() to be 2.");

  int64_t block_size_N = block_size[0];
  int64_t block_size_K = block_size[1];

  constexpr int64_t BLOCK_N = block_size_n();
  TORCH_CHECK(block_size_N % BLOCK_N == 0, "fp8_scaled_mm_cpu: expect block_size_N to be multiples of BLOCK_N");
  TORCH_CHECK(block_size_K == BLOCK_K, "fp8_scaled_mm_cpu: expect block_size_K equals to BLOCK_K");
  CHECK_EQ(scales2.size(0), div_up(N, block_size_N));
  CHECK_EQ(scales2.size(1), div_up(K, block_size_K));

  const auto st = mat1.scalar_type();
  TORCH_CHECK(st == at::kBFloat16 || st == at::kHalf, "fp8_scaled_mm_cpu: expect A to be bfloat16 or half.");
  TORCH_CHECK(st == out_dtype, "fp8_scaled_mm_cpu: expect A has same dtype with out_dtype.");
  TORCH_CHECK(mat2.scalar_type() == at::kFloat8_e4m3fn, "fp8_scaled_mm_cpu: expect mat2 to be fp8_e4m3.");
  TORCH_CHECK(scales2.scalar_type() == at::kFloat, "fp8_scaled_mm_cpu: expect scales to be float32.");
  auto out = at::empty({M, N}, mat1.options().dtype(out_dtype));

  // strides
  int64_t mat1_strideM = mat1.stride(0);
  int64_t out_strideM = out.stride(0);

  const bool has_bias = bias.has_value();
  const float* bias_data = nullptr;
  if (has_bias) {
    CHECK_EQ(bias.value().size(0), N);
    bias_data = bias.value().data_ptr<float>();
  }

  AT_DISPATCH_REDUCED_FLOATING_TYPES(out_dtype, "fp8_scaled_mm_kernel_impl", [&] {
    fp8_scaled_mm_kernel_impl<scalar_t>(
        out.data_ptr<scalar_t>(),
        mat1.data_ptr<scalar_t>(),
        packed_w.data_ptr<at::Float8_e4m3fn>(),
        scales2.data_ptr<float>(),
        bias_data,
        M,
        N,
        K,
        mat1_strideM,
        out_strideM,
        block_size_N,
        block_size_K);
  });

  return out;
}