test_fused_moe.py 7.86 KB
Newer Older
1
2
3
import unittest

import torch
4
5
import torch.nn.functional as F
from tqdm import tqdm
6
7

from sglang.srt.layers.activation import SiluAndMul
Ke Bao's avatar
Ke Bao committed
8
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe
9
10
11
from sglang.srt.layers.quantization.fp8_kernel import is_fp8_fnuz
from sglang.srt.layers.quantization.fp8_utils import normalize_e4m3fn_to_e4m3fnuz
from sglang.srt.utils import is_hip
12
from sglang.test.test_utils import CustomTestCase
13

14
15
16
_is_hip = is_hip()
_is_fp8_fnuz = is_fp8_fnuz()

17

18
class TestFusedMOE(CustomTestCase):
19
20
21
    NUM_EXPERTS = [8, 64]
    TOP_KS = [2, 6]

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    @staticmethod
    def create_random_cuda_tensor(shape, dtype, mean=0, std=0.01):
        """Create a random CUDA tensor

        Args:
            shape: Tensor shape
            dtype: Data type
            mean: Mean value
            std: Standard deviation

        Returns:
            torch.Tensor: Randomly initialized CUDA tensor
        """
        return torch.empty(shape, dtype=dtype, device="cuda").normal_(mean, std)

    def get_tolerance(self, dtype):
        """Get tolerance values for different data types

        Args:
            dtype: Data type

        Returns:
            tuple: (relative tolerance, absolute tolerance)
        """
        if dtype == torch.float32:
            return 1e-3, 1e-5
        elif dtype in [torch.float16, torch.bfloat16]:
            return 1e-1, 1e-2
        else:
            return 1e-2, 1e-2  # Default values for other types

53
54
55
56
57
58
59
60
61
62
63
64
    def torch_naive_moe(
        self,
        a,
        w1,
        w2,
        score,
        topk,
        w1_scale=None,
        w2_scale=None,
        a1_scale=None,
        a2_scale=None,
    ):
65
66
67
68
69
70
71
        B, D = a.shape
        a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
        out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
        score = torch.softmax(score, dim=-1, dtype=torch.float32)
        topk_weight, topk_ids = torch.topk(score, topk)
        topk_weight = topk_weight.view(-1)
        topk_ids = topk_ids.view(-1)
72

73
        if w1.dtype in [torch.float8_e4m3fn, torch.float8_e4m3fnuz]:
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            w1_compute = w1.to(a.dtype)
            w2_compute = w2.to(a.dtype)

            if w1_scale is not None:
                w1_compute = (w1_compute * w1_scale.view(-1, 1, 1)).to(a.dtype)
            if w2_scale is not None:
                w2_compute = (w2_compute * w2_scale.view(-1, 1, 1)).to(a.dtype)
            if a1_scale is not None:
                a = (a * a1_scale).to(a.dtype)
            if a2_scale is not None:
                a = (a * a2_scale).to(a.dtype)
        else:
            w1_compute = w1
            w2_compute = w2

        for i in range(w1_compute.shape[0]):
90
91
            mask = topk_ids == i
            if mask.sum():
92
93
94
95
                out[mask] = SiluAndMul()(
                    a[mask] @ w1_compute[i].transpose(0, 1)
                ) @ w2_compute[i].transpose(0, 1)

96
97
98
99
100
        return (
            out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
        ).sum(dim=1)

    def _test_case(self, m, n, k, e, topk, dtype, use_fp8_w8a8=False):
101
102
        rtol, atol = self.get_tolerance(dtype)

103
104
105
        if use_fp8_w8a8:
            # AssertionError: fp8e4nv data type is not supported on CUDA arch < 89
            capability = torch.cuda.get_device_capability()
106
            if not _is_hip and not (capability[0] >= 9 or capability == (8, 9)):
107
108
                return

109
110
111
            a = self.create_random_cuda_tensor((m, k), dtype)
            w1 = self.create_random_cuda_tensor((e, 2 * n, k), dtype)
            w2 = self.create_random_cuda_tensor((e, k, n), dtype)
112
113
            w1 = w1.to(torch.float8_e4m3fn)
            w2 = w2.to(torch.float8_e4m3fn)
114
115
116
117
118
            score = self.create_random_cuda_tensor((m, e), dtype)
            w1_scale = self.create_random_cuda_tensor(e, torch.float32)
            w2_scale = self.create_random_cuda_tensor(e, torch.float32)
            a1_scale = self.create_random_cuda_tensor(1, torch.float32)
            a2_scale = self.create_random_cuda_tensor(1, torch.float32)
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            # Handle HIP case: normalize float8 weights so fused kernel doesn't break
            # on ROCm.
            if _is_fp8_fnuz:
                # Normalize to e4m3fnuz on HIP
                w1, w1_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                    weight=w1,
                    weight_scale=w1_scale,
                    input_scale=a1_scale,
                )
                w2, w2_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                    weight=w2,
                    weight_scale=w2_scale,
                    input_scale=a2_scale,
                )

135
136
137
138
139
140
141
142
143
144
145
146
147
148
            sglang_output = fused_moe(
                a,
                w1,
                w2,
                score,
                topk,
                renormalize=False,
                use_fp8_w8a8=True,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                a1_scale=a1_scale,
                a2_scale=a2_scale,
            )

149
            torch_output = self.torch_naive_moe(
150
151
152
153
154
155
156
157
158
                a,
                w1,
                w2,
                score,
                topk,
                w1_scale,
                w2_scale,
                a1_scale,
                a2_scale,
159
160
161
            )
            torch.testing.assert_close(
                sglang_output, torch_output, rtol=rtol, atol=atol
162
163
            )
        else:
164
165
166
167
            a = self.create_random_cuda_tensor((m, k), dtype)
            w1 = self.create_random_cuda_tensor((e, 2 * n, k), dtype)
            w2 = self.create_random_cuda_tensor((e, k, n), dtype)
            score = self.create_random_cuda_tensor((m, e), dtype)
168
169
170

            triton_output = fused_moe(a, w1, w2, score, topk, renormalize=False)
            torch_output = self.torch_naive_moe(a, w1, w2, score, topk)
171
172
173
            torch.testing.assert_close(
                triton_output, torch_output, rtol=rtol, atol=atol
            )
174
175

    def test_various_configurations(self):
176
177
        m_values = [1, 33, 64, 222]
        n_values = [128, 1024]
178
179
180
181
        k_values = [128, 511, 1024]
        dtypes = [torch.float16, torch.bfloat16]
        fp8_modes = [False, True]

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        # Calculate total number of tests
        total_tests = (
            len(m_values)
            * len(n_values)
            * len(k_values)
            * len(self.NUM_EXPERTS)
            * len(self.TOP_KS)
            * len(dtypes)
            * len(fp8_modes)
        )

        # Create progress bar
        with tqdm(total=total_tests, desc="Running MoE tests") as pbar:
            for m in m_values:
                for n in n_values:
                    for k in k_values:
                        for e in self.NUM_EXPERTS:
                            for topk in self.TOP_KS:
                                for dtype in dtypes:
                                    for use_fp8_w8a8 in fp8_modes:
                                        with self.subTest(
                                            m=m,
                                            n=n,
                                            k=k,
                                            e=e,
                                            topk=topk,
                                            dtype=dtype,
                                            fp8=use_fp8_w8a8,
                                        ):
                                            self._test_case(
                                                m,
                                                n,
                                                k,
                                                e,
                                                topk,
                                                dtype,
                                                use_fp8_w8a8=use_fp8_w8a8,
                                            )
220
                                            torch.cuda.empty_cache()
221
                                        pbar.update(1)
222
223
224
225


if __name__ == "__main__":
    unittest.main()