mixtral.py 13.5 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
# Adapted from
# https://github.com/vllm-project/vllm/blob/d0215a58e78572d91dadafe9d832a2db89b09a13/vllm/model_executor/models/mixtral.py#L1
"""Inference-only Mixtral model."""
4
from typing import Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
5
6
7
8
9
10

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import MixtralConfig
Yuanhan Zhang's avatar
Yuanhan Zhang committed
11
12
13
14
15
from vllm.distributed import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
    tensor_model_parallel_all_reduce,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
18
19
20
21
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
    QKVParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Yuanhan Zhang's avatar
Yuanhan Zhang committed
22
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
25
26
27
28
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)

Liangsheng Yin's avatar
Liangsheng Yin committed
29
30
31
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.managers.router.model_runner import InputMetadata
Yuanhan Zhang's avatar
Yuanhan Zhang committed
32
from sglang.srt.weight_utils import default_weight_loader, hf_model_weights_iterator
Liangsheng Yin's avatar
Liangsheng Yin committed
33

Lianmin Zheng's avatar
Lianmin Zheng committed
34
35
36
37
38
39
40

class MixtralMLP(nn.Module):
    def __init__(
        self,
        num_experts: int,
        hidden_size: int,
        intermediate_size: int,
41
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44
45
46
47
48
    ) -> None:
        super().__init__()
        self.num_experts = num_experts
        self.ffn_dim = intermediate_size
        self.hidden_dim = hidden_size

        self.w1 = ReplicatedLinear(
49
            self.hidden_dim, self.ffn_dim, bias=False, quant_config=quant_config
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
        )
        self.w2 = ReplicatedLinear(
52
            self.ffn_dim, self.hidden_dim, bias=False, quant_config=quant_config
Lianmin Zheng's avatar
Lianmin Zheng committed
53
54
        )
        self.w3 = ReplicatedLinear(
55
            self.hidden_dim, self.ffn_dim, bias=False, quant_config=quant_config
Lianmin Zheng's avatar
Lianmin Zheng committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        )

        # TODO: Use vllm's SiluAndMul
        self.act_fn = nn.SiLU()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        w1_out, _ = self.w1(hidden_states)
        w1_out = self.act_fn(w1_out)
        w3_out, _ = self.w3(hidden_states)
        current_hidden_states = w1_out * w3_out
        current_hidden_states, _ = self.w2(current_hidden_states)
        return current_hidden_states


class MixtralMoE(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
74
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    ):
        super().__init__()
        self.config = config
        self.rank = get_tensor_model_parallel_rank()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.num_total_experts = config.num_local_experts
        self.top_k = config.num_experts_per_tok
        if self.tp_size > self.num_total_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {self.num_total_experts}."
            )
        # Split experts equally between ranks
        self.expert_indicies = np.array_split(
            range(self.num_total_experts), self.tp_size
        )[self.rank].tolist()
        if not self.expert_indicies:
            raise ValueError(f"Rank {self.rank} has no experts assigned to it.")

        self.experts = nn.ModuleList(
            [
96
97
98
99
100
                (
                    MixtralMLP(
                        self.num_total_experts,
                        config.hidden_size,
                        config.intermediate_size,
101
                        quant_config=quant_config,
102
103
104
                    )
                    if idx in self.expert_indicies
                    else None
Lianmin Zheng's avatar
Lianmin Zheng committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                )
                for idx in range(self.num_total_experts)
            ]
        )
        self.gate = ReplicatedLinear(
            config.hidden_size, self.num_total_experts, bias=False, linear_method=None
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        router_logits, _ = self.gate(hidden_states)

        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(
            routing_weights, self.top_k, dim=-1
        )
        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        final_hidden_states = None
        for expert_idx in self.expert_indicies:
            expert_layer = self.experts[expert_idx]
            expert_mask = selected_experts == expert_idx
            expert_weights = (routing_weights * expert_mask).sum(dim=-1, keepdim=True)

            current_hidden_states = expert_layer(hidden_states).mul_(expert_weights)
            if final_hidden_states is None:
                final_hidden_states = current_hidden_states
            else:
                final_hidden_states.add_(current_hidden_states)

        return tensor_model_parallel_all_reduce(final_hidden_states)


class MixtralAttention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        max_position: int = 4096 * 32,
        rope_theta: float = 10000,
146
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        sliding_window: Optional[int] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.sliding_window = sliding_window

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
178
            quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
179
180
181
182
183
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
184
            quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=int(self.rope_theta),
            is_neox_style=True,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class MixtralDecoderLayer(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
        layer_id: int = 0,
220
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
221
222
223
224
225
226
227
228
229
230
231
232
233
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        # Requires transformers > 4.32.0
        rope_theta = getattr(config, "rope_theta", 10000)
        self.self_attn = MixtralAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            sliding_window=config.sliding_window,
234
            quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
235
        )
236
        self.block_sparse_moe = MixtralMoE(config=config, quant_config=quant_config)
Lianmin Zheng's avatar
Lianmin Zheng committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.block_sparse_moe(hidden_states)
        return hidden_states, residual


class MixtralModel(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
271
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
272
273
274
275
276
277
278
279
280
281
282
283
    ) -> None:
        super().__init__()
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        # config.num_hidden_layers=16
        self.layers = nn.ModuleList(
            [
284
                MixtralDecoderLayer(config, i, quant_config=quant_config)
Lianmin Zheng's avatar
Lianmin Zheng committed
285
286
287
288
289
290
291
292
293
294
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
295
        input_embeds: torch.Tensor = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
296
    ) -> torch.Tensor:
297
        if input_embeds is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
298
299
            hidden_states = self.embed_tokens(input_ids)
        else:
300
            hidden_states = input_embeds
Lianmin Zheng's avatar
Lianmin Zheng committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions, hidden_states, input_metadata, residual
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class MixtralForCausalLM(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
315
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
316
317
318
    ) -> None:
        super().__init__()
        self.config = config
319
320
        self.quant_config = quant_config
        self.model = MixtralModel(config, quant_config=quant_config)
Lianmin Zheng's avatar
Lianmin Zheng committed
321
322
323
324
325
326
327
328
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.logits_processor = LogitsProcessor(config)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
329
        input_embeds: torch.Tensor = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
330
    ) -> torch.Tensor:
331
        hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head.weight, input_metadata
        )

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        load_format: str = "auto",
        revision: Optional[str] = None,
    ):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
352
353
354
355
356
            model_name_or_path,
            cache_dir,
            load_format,
            revision,
            fall_back_to_pt=False,
Lianmin Zheng's avatar
Lianmin Zheng committed
357
358
359
        ):
            if "rotary_emb.inv_freq" in name:
                continue
shiyi.c_98's avatar
shiyi.c_98 committed
360
            for param_name, weight_name, shard_id in stacked_params_mapping:
Lianmin Zheng's avatar
Lianmin Zheng committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # Skip experts that are not assigned to this worker.
                if "block_sparse_moe.experts." in name and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
Cody Yu's avatar
Cody Yu committed
381

Lianmin Zheng's avatar
Lianmin Zheng committed
382

Cody Yu's avatar
Cody Yu committed
383
EntryClass = MixtralForCausalLM