embedding_model.ipynb 3.61 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Embedding Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Embedding server is ready. Proceeding with the next steps.\n"
     ]
    }
   ],
   "source": [
    "# Equivalent to running this in the shell:\n",
    "# python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --port 30010 --host 0.0.0.0 --is-embedding --log-level error\n",
33
34
35
36
37
38
    "from sglang.utils import execute_shell_command, wait_for_server, terminate_process\n",
    "\n",
    "embedding_process = execute_shell_command(\"\"\"\n",
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
    "    --port 30010 --host 0.0.0.0 --is-embedding --log-level error\n",
    "\"\"\")\n",
Chayenne's avatar
Chayenne committed
39
    "\n",
40
    "wait_for_server(\"http://localhost:30010\")\n",
Chayenne's avatar
Chayenne committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    "\n",
    "print(\"Embedding server is ready. Proceeding with the next steps.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use Curl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.0083160400390625, 0.0006804466247558594, -0.00809478759765625, -0.0006995201110839844, 0.0143890380859375, -0.0090179443359375, 0.01238250732421875, 0.00209808349609375, 0.0062103271484375, -0.003047943115234375]\n"
     ]
    }
   ],
   "source": [
    "# Get the first 10 elements of the embedding\n",
    "\n",
    "! curl -s http://localhost:30010/v1/embeddings \\\n",
    "  -H \"Content-Type: application/json\" \\\n",
    "  -H \"Authorization: Bearer None\" \\\n",
    "  -d '{\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": \"Once upon a time\"}' \\\n",
    "  | python3 -c \"import sys, json; print(json.load(sys.stdin)['data'][0]['embedding'][:10])\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Using OpenAI Compatible API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.00603485107421875, -0.0190582275390625, -0.01273345947265625, 0.01552581787109375, 0.0066680908203125, -0.0135955810546875, 0.01131439208984375, 0.0013713836669921875, -0.0089874267578125, 0.021759033203125]\n"
     ]
    }
   ],
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(\n",
    "    base_url=\"http://127.0.0.1:30010/v1\", api_key=\"None\"\n",
    ")\n",
    "\n",
    "# Text embedding example\n",
    "response = client.embeddings.create(\n",
    "    model=\"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
    "    input=\"How are you today\",\n",
    ")\n",
    "\n",
    "embedding = response.data[0].embedding[:10]\n",
    "print(embedding)"
   ]
111
112
113
114
115
116
117
118
119
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(embedding_process)"
   ]
Chayenne's avatar
Chayenne committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "AlphaMeemory",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}