model_rpc.py 26.1 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
import asyncio
import logging
import multiprocessing
import time
Lianmin Zheng's avatar
Lianmin Zheng committed
5
import warnings
Lianmin Zheng's avatar
Lianmin Zheng committed
6
from concurrent.futures import ThreadPoolExecutor
Cody Yu's avatar
Cody Yu committed
7
from typing import List
Lianmin Zheng's avatar
Lianmin Zheng committed
8
9
10
11
12
13
14

import numpy as np
import rpyc
import torch
from rpyc.utils.classic import obtain
from rpyc.utils.server import ThreadedServer
from sglang.srt.constrained.fsm_cache import FSMCache
15
from sglang.srt.constrained.jump_forward import JumpForwardCache
Lianmin Zheng's avatar
Lianmin Zheng committed
16
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
Liangsheng Yin's avatar
Liangsheng Yin committed
17
18
19
from sglang.srt.managers.io_struct import (
    BatchTokenIDOut,
    FlushCacheReq,
20
    TokenizedGenerateReqInput,
Liangsheng Yin's avatar
Liangsheng Yin committed
21
)
Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
24
25
26
27
28
29
30
31
32
33
from sglang.srt.managers.router.infer_batch import Batch, ForwardMode, Req
from sglang.srt.managers.router.model_runner import ModelRunner
from sglang.srt.managers.router.radix_cache import RadixCache
from sglang.srt.managers.router.scheduler import Scheduler
from sglang.srt.model_config import ModelConfig
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.srt.utils import (
    get_exception_traceback,
    get_int_token_logit_bias,
    is_multimodal_model,
    set_random_seed,
)
34
from vllm.logger import _default_handler as vllm_default_handler
Lianmin Zheng's avatar
Lianmin Zheng committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

logger = logging.getLogger("model_rpc")


class ModelRpcServer(rpyc.Service):
    def exposed_init_model(
        self,
        tp_rank: int,
        server_args: ServerArgs,
        port_args: PortArgs,
    ):
        server_args, port_args = [obtain(x) for x in [server_args, port_args]]

        # Copy arguments
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
        self.schedule_heuristic = server_args.schedule_heuristic
52
        self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
53
54
55
        vllm_default_handler.setLevel(
            level=getattr(logging, server_args.log_level.upper())
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
56
57
58

        # Init model and tokenizer
        self.model_config = ModelConfig(
Liangsheng Yin's avatar
Liangsheng Yin committed
59
60
61
            server_args.model_path,
            server_args.trust_remote_code,
            context_length=server_args.context_length,
Lianmin Zheng's avatar
Lianmin Zheng committed
62
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
63
64
65
66
67
68
69

        # for model end global settings
        server_args_dict = {
            "enable_flashinfer": server_args.enable_flashinfer,
            "attention_reduce_in_fp32": server_args.attention_reduce_in_fp32,
        }

Lianmin Zheng's avatar
Lianmin Zheng committed
70
        self.model_runner = ModelRunner(
Liangsheng Yin's avatar
Liangsheng Yin committed
71
72
73
74
75
76
77
            model_config=self.model_config,
            mem_fraction_static=server_args.mem_fraction_static,
            tp_rank=tp_rank,
            tp_size=server_args.tp_size,
            nccl_port=port_args.nccl_port,
            load_format=server_args.load_format,
            trust_remote_code=server_args.trust_remote_code,
Liangsheng Yin's avatar
Liangsheng Yin committed
78
            server_args_dict=server_args_dict,
Lianmin Zheng's avatar
Lianmin Zheng committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        )
        if is_multimodal_model(server_args.model_path):
            self.processor = get_processor(
                server_args.tokenizer_path,
                tokenizer_mode=server_args.tokenizer_mode,
                trust_remote_code=server_args.trust_remote_code,
            )
            self.tokenizer = self.processor.tokenizer
        else:
            self.tokenizer = get_tokenizer(
                server_args.tokenizer_path,
                tokenizer_mode=server_args.tokenizer_mode,
                trust_remote_code=server_args.trust_remote_code,
            )
        self.max_total_num_token = self.model_runner.max_total_num_token
        self.max_num_running_seq = self.max_total_num_token // 2
        self.max_prefill_num_token = max(
96
            self.model_config.context_len,
97
98
99
100
101
            (
                self.max_total_num_token // 6
                if server_args.max_prefill_num_token is None
                else server_args.max_prefill_num_token
            ),
Lianmin Zheng's avatar
Lianmin Zheng committed
102
103
104
105
106
107
108
109
110
111
112
        )
        self.int_token_logit_bias = torch.tensor(
            get_int_token_logit_bias(self.tokenizer, self.model_config.vocab_size)
        )
        set_random_seed(server_args.random_seed)
        logger.info(
            f"Rank {self.tp_rank}: "
            f"max_total_num_token={self.max_total_num_token}, "
            f"max_prefill_num_token={self.max_prefill_num_token}, "
            f"context_len={self.model_config.context_len}, "
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
113
        logger.info(server_args.get_optional_modes_logging())
Lianmin Zheng's avatar
Lianmin Zheng committed
114
115

        # Init cache
Liangsheng Yin's avatar
Liangsheng Yin committed
116
        self.tree_cache = RadixCache(server_args.disable_radix_cache)
Cody Yu's avatar
Cody Yu committed
117
        self.tree_cache_metrics = {"total": 0, "hit": 0}
Lianmin Zheng's avatar
Lianmin Zheng committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        self.scheduler = Scheduler(
            self.schedule_heuristic,
            self.max_num_running_seq,
            self.max_prefill_num_token,
            self.max_total_num_token,
            self.tree_cache,
        )
        self.req_to_token_pool = self.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.model_runner.token_to_kv_pool

        # Init running status
        self.forward_queue: List[Req] = []
        self.running_batch: Batch = None
        self.out_pyobjs = []
        self.decode_forward_ct = 0
133
        self.stream_interval = server_args.stream_interval
Lianmin Zheng's avatar
Lianmin Zheng committed
134
135

        # Init the FSM cache for constrained generation
136
137
138
139
140
141
142
        self.regex_fsm_cache = FSMCache(
            server_args.tokenizer_path,
            {
                "tokenizer_mode": server_args.tokenizer_mode,
                "trust_remote_code": server_args.trust_remote_code,
            },
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
143
        self.jump_forward_cache = JumpForwardCache()
Lianmin Zheng's avatar
Lianmin Zheng committed
144

145
146
147
148
149
        # Init new token estimation
        self.new_token_ratio = min(0.4 * server_args.schedule_conservativeness, 1.0)
        self.min_new_token_ratio = min(0.2 * server_args.schedule_conservativeness, 1.0)
        self.new_token_ratio_step = (0.0001, 0.05)  # (down, up)

Liangsheng Yin's avatar
Liangsheng Yin committed
150
151
152
153
154
    def flush_cache(self):
        if len(self.forward_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
Cody Yu's avatar
Cody Yu committed
155
156
            self.tree_cache_metrics = {"total": 0, "hit": 0}
            self.regex_fsm_cache.reset()
Liangsheng Yin's avatar
Liangsheng Yin committed
157
158
159
160
161
162
163
164
165
166
167
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
        else:
            warnings.warn(
                "Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.forward_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
168
169
170
171
172
173
174
175
176
    def exposed_step(self, recv_reqs):
        if self.tp_size != 1:
            recv_reqs = obtain(recv_reqs)

        try:
            # Recv requests
            for recv_req in recv_reqs:
                if isinstance(recv_req, TokenizedGenerateReqInput):
                    self.handle_generate_request(recv_req)
Liangsheng Yin's avatar
Liangsheng Yin committed
177
178
                elif isinstance(recv_req, FlushCacheReq):
                    self.flush_cache()
Lianmin Zheng's avatar
Lianmin Zheng committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                else:
                    raise ValueError(f"Invalid request: {recv_req}")

            # Forward
            self.forward_step()
        except Exception:
            logger.error("Exception in ModelRpcClient:\n" + get_exception_traceback())

        # Return results
        ret = self.out_pyobjs
        self.out_pyobjs = []
        return ret

    @torch.inference_mode()
    def forward_step(self):
        new_batch = self.get_new_fill_batch()

        if new_batch is not None:
            # Run new fill batch
            self.forward_fill_batch(new_batch)

            if not new_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = new_batch
                else:
                    self.running_batch.merge(new_batch)
        else:
            # Run decode batch
            if self.running_batch is not None:
                # Run a few decode batches continuously for reducing overhead
                for _ in range(10):
                    self.forward_decode_batch(self.running_batch)

                    if self.running_batch.is_empty():
                        self.running_batch = None
                        break
215
216
217

                    if self.out_pyobjs and self.running_batch.reqs[0].stream:
                        break
Lianmin Zheng's avatar
Lianmin Zheng committed
218
219
220
221
222
223
224
225
226
227
228
229
230

                    if self.running_batch is not None and self.tp_rank == 0:
                        if self.decode_forward_ct % 40 == 0:
                            num_used = self.max_total_num_token - (
                                self.token_to_kv_pool.available_size()
                                + self.tree_cache.evictable_size()
                            )
                            logger.info(
                                f"#running-req: {len(self.running_batch.reqs)}, "
                                f"#token: {num_used}, "
                                f"token usage: {num_used / self.max_total_num_token:.2f}, "
                                f"#queue-req: {len(self.forward_queue)}"
                            )
231
232
233
234
235
236
237
            else:
                # check the available size
                available_size = (
                    self.token_to_kv_pool.available_size()
                    + self.tree_cache.evictable_size()
                )
                if available_size != self.max_total_num_token:
Ying Sheng's avatar
Ying Sheng committed
238
                    warnings.warn(
239
240
241
242
                        "Warning: "
                        f"available_size={available_size}, max_total_num_token={self.max_total_num_token}\n"
                        "KV cache pool leak detected!"
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
243
244
245
246
247

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
248
        req = Req(recv_req.rid, recv_req.input_text, recv_req.input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
249
250
        req.pixel_values = recv_req.pixel_values
        if req.pixel_values is not None:
251
            req.pad_value = [
Lianmin Zheng's avatar
Lianmin Zheng committed
252
253
254
255
256
                (recv_req.image_hash) % self.model_config.vocab_size,
                (recv_req.image_hash >> 16) % self.model_config.vocab_size,
                (recv_req.image_hash >> 32) % self.model_config.vocab_size,
                (recv_req.image_hash >> 64) % self.model_config.vocab_size,
            ]
Lianmin Zheng's avatar
Lianmin Zheng committed
257
            req.image_size = recv_req.image_size
Lianmin Zheng's avatar
Lianmin Zheng committed
258
            req.input_ids, req.image_offset = self.model_runner.model.pad_input_ids(
259
                req.input_ids, req.pad_value, req.pixel_values.shape, req.image_size
Lianmin Zheng's avatar
Lianmin Zheng committed
260
261
            )
        req.sampling_params = recv_req.sampling_params
262
263
        req.return_logprob = recv_req.return_logprob
        req.logprob_start_len = recv_req.logprob_start_len
Lianmin Zheng's avatar
Lianmin Zheng committed
264
265
266
        req.stream = recv_req.stream
        req.tokenizer = self.tokenizer

267
268
        # Init regex fsm
        if req.sampling_params.regex is not None:
Cody Yu's avatar
Cody Yu committed
269
            req.regex_fsm = self.regex_fsm_cache.query(req.sampling_params.regex)
270
            if not self.disable_regex_jump_forward:
Liangsheng Yin's avatar
Liangsheng Yin committed
271
                req.jump_forward_map = self.jump_forward_cache.query(
Liangsheng Yin's avatar
Liangsheng Yin committed
272
273
                    req.sampling_params.regex
                )
274

Lianmin Zheng's avatar
Lianmin Zheng committed
275
276
277
278
279
        # Truncate long prompts
        req.input_ids = req.input_ids[: self.model_config.context_len - 1]
        req.sampling_params.max_new_tokens = min(
            req.sampling_params.max_new_tokens,
            self.model_config.context_len - 1 - len(req.input_ids),
280
            self.max_total_num_token - 128 - len(req.input_ids),
Lianmin Zheng's avatar
Lianmin Zheng committed
281
282
283
284
285
286
287
288
289
290
291
292
        )
        self.forward_queue.append(req)

    def get_new_fill_batch(self):
        if (
            self.running_batch is not None
            and len(self.running_batch.reqs) > self.max_num_running_seq
        ):
            return None

        for req in self.forward_queue:
            prefix_indices, last_node = self.tree_cache.match_prefix(req.input_ids)
293
294
295
            if req.return_logprob:
                prefix_indices = prefix_indices[: req.logprob_start_len]
            req.extend_input_len = len(req.input_ids) - len(prefix_indices)
Lianmin Zheng's avatar
Lianmin Zheng committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
            req.prefix_indices = prefix_indices
            req.last_node = last_node

        # Get priority queue
        self.forward_queue = self.scheduler.get_priority_queue(self.forward_queue)

        # Add requests if there is available space
        can_run_list = []
        new_batch_total_tokens = 0
        new_batch_input_tokens = 0

        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        if self.running_batch:
            available_size -= sum(
                [
313
                    (r.max_new_tokens() - len(r.output_ids)) * self.new_token_ratio
Lianmin Zheng's avatar
Lianmin Zheng committed
314
315
316
317
318
                    for r in self.running_batch.reqs
                ]
            )

        for req in self.forward_queue:
319
            if req.return_logprob:
Lianmin Zheng's avatar
Lianmin Zheng committed
320
                # Need at least two tokens to compute normalized logprob
321
322
323
                if req.extend_input_len < 2:
                    delta = 2 - req.extend_input_len
                    req.extend_input_len += delta
Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
326
                    req.prefix_indices = req.prefix_indices[:-delta]
                    if req.image_offset is not None:
                        req.image_offset += delta
327
            if req.extend_input_len == 0 and req.max_new_tokens() > 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
328
                # Need at least one token to compute logits
329
                req.extend_input_len = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
330
331
332
333
334
                req.prefix_indices = req.prefix_indices[:-1]
                if req.image_offset is not None:
                    req.image_offset += 1

            if (
335
                req.extend_input_len + req.max_new_tokens() + new_batch_total_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
336
                < available_size
337
                and req.extend_input_len + new_batch_input_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
338
339
340
341
342
343
                < self.max_prefill_num_token
            ):
                delta = self.tree_cache.inc_ref_counter(req.last_node)
                available_size += delta

                if not (
344
                    req.extend_input_len + req.max_new_tokens() + new_batch_total_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
                    < available_size
                ):
347
                    # Undo the insertion
Lianmin Zheng's avatar
Lianmin Zheng committed
348
349
350
                    delta = self.tree_cache.dec_ref_counter(req.last_node)
                    available_size += delta
                else:
351
                    # Add this request to the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
352
353
354
                    self.token_to_kv_pool.add_refs(req.prefix_indices)
                    can_run_list.append(req)
                    new_batch_total_tokens += (
355
                        req.extend_input_len + req.max_new_tokens()
Lianmin Zheng's avatar
Lianmin Zheng committed
356
                    )
357
                    new_batch_input_tokens += req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
358
359
360
361
362

        if len(can_run_list) == 0:
            return None

        if self.tp_rank == 0:
363
364
365
            running_req = (
                0 if self.running_batch is None else len(self.running_batch.reqs)
            )
Cody Yu's avatar
Cody Yu committed
366
            hit_tokens = sum(len(x.prefix_indices) for x in can_run_list)
367
368
369
            self.tree_cache_metrics["total"] += (
                hit_tokens + new_batch_input_tokens
            ) / 10**9
Cody Yu's avatar
Cody Yu committed
370
371
372
373
            self.tree_cache_metrics["hit"] += hit_tokens / 10**9
            tree_cache_hit_rate = (
                self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
374
375
            logger.info(
                f"new fill batch. #seq: {len(can_run_list)}. "
Cody Yu's avatar
Cody Yu committed
376
                f"#cached_token: {hit_tokens}. "
Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
                f"#new_token: {new_batch_input_tokens}. "
                f"#remaining_req: {len(self.forward_queue) - len(can_run_list)}. "
Cody Yu's avatar
Cody Yu committed
379
380
381
382
383
384
                f"#running_req: {running_req}. "
                f"tree_cache_hit_rate: {100.0 * tree_cache_hit_rate:.2f}%."
            )
            logger.debug(
                f"fsm_cache_hit_rate: {100.0 * self.regex_fsm_cache.get_cache_hit_rate():.2f}%. "
                f"fsm_cache_avg_init_time: {self.regex_fsm_cache.get_avg_init_time():.2f}s. "
Liangsheng Yin's avatar
Liangsheng Yin committed
385
386
                f"ff_cache_hit_rate: {100.0 * self.jump_forward_cache.get_cache_hit_rate():.2f}%. "
                f"ff_cache_avg_init_time: {self.jump_forward_cache.get_avg_init_time():.2f}s. "
Lianmin Zheng's avatar
Lianmin Zheng committed
387
388
            )

389
        new_batch = Batch.init_new(
Lianmin Zheng's avatar
Lianmin Zheng committed
390
391
392
393
394
395
396
397
398
399
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
        self.forward_queue = [x for x in self.forward_queue if x not in can_run_list]
        return new_batch

    def forward_fill_batch(self, batch: Batch):
        # Build batch tensors
400
401
402
403
        batch.prepare_for_extend(
            self.model_config.vocab_size, self.int_token_logit_bias
        )

Cody Yu's avatar
Cody Yu committed
404
        logprobs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
405
406
        if batch.extend_num_tokens != 0:
            # Forward
407
408
409
410
411
412
            logits, (
                prefill_logprobs,
                normalized_logprobs,
                last_logprobs,
            ) = self.model_runner.forward(
                batch, ForwardMode.EXTEND, batch.return_logprob
Lianmin Zheng's avatar
Lianmin Zheng committed
413
            )
Cody Yu's avatar
Cody Yu committed
414
415
            if prefill_logprobs is not None:
                logprobs = prefill_logprobs.cpu().tolist()
Lianmin Zheng's avatar
Lianmin Zheng committed
416
417
                normalized_logprobs = normalized_logprobs.cpu().tolist()

Cody Yu's avatar
Cody Yu committed
418
            next_token_ids, _ = batch.sample(logits)
Lianmin Zheng's avatar
Lianmin Zheng committed
419
420
421
            next_token_ids = next_token_ids.cpu().tolist()
        else:
            next_token_ids = [self.tokenizer.eos_token_id] * len(batch.reqs)
Cody Yu's avatar
Cody Yu committed
422
            logits = logprobs = normalized_logprobs = last_logprobs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
423

Cody Yu's avatar
Cody Yu committed
424
        # Only batch transfer the selected logprobs of the next token to CPU to reduce overhead.
Lianmin Zheng's avatar
Lianmin Zheng committed
425
        reqs = batch.reqs
Cody Yu's avatar
Cody Yu committed
426
        if last_logprobs is not None:
427
428
429
            last_logprobs = (
                last_logprobs[torch.arange(len(reqs)), next_token_ids].cpu().tolist()
            )
Cody Yu's avatar
Cody Yu committed
430
431

        # Check finish condition
432
433
        pt = 0
        for i, req in enumerate(reqs):
434
            req.completion_tokens_wo_jump_forward += 1
435
436
            req.output_ids = [next_token_ids[i]]
            req.check_finished()
Lianmin Zheng's avatar
Lianmin Zheng committed
437

438
439
440
            if logprobs is not None:
                req.logprob = logprobs[pt : pt + req.extend_input_len - 1]
                req.normalized_logprob = normalized_logprobs[i]
Cody Yu's avatar
Cody Yu committed
441

442
443
444
                # If logprob_start_len > 0, then first logprob_start_len prompt tokens
                # will be ignored.
                prompt_token_len = len(req.logprob)
Liangsheng Yin's avatar
Liangsheng Yin committed
445
                token_ids = req.input_ids[-prompt_token_len:] + [next_token_ids[i]]
446
                token_logprobs = req.logprob + [last_logprobs[i]]
Cody Yu's avatar
Cody Yu committed
447
                req.token_logprob = list(zip(token_ids, token_logprobs))
448
449
                if req.logprob_start_len == 0:
                    req.token_logprob = [(req.input_ids[0], None)] + req.token_logprob
450
                pt += req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
451
452
453
454

        self.handle_finished_requests(batch)

    def forward_decode_batch(self, batch: Batch):
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        # check if decode out of memory
        if not batch.check_decode_mem():
            old_ratio = self.new_token_ratio
            self.new_token_ratio = min(old_ratio + self.new_token_ratio_step[1], 1.0)

            retracted_reqs = batch.retract_decode()
            logger.info(
                "decode out of memory happened, "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.forward_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
                self.new_token_ratio - self.new_token_ratio_step[0],
                self.min_new_token_ratio,
            )

473
        if not self.disable_regex_jump_forward:
Liangsheng Yin's avatar
Liangsheng Yin committed
474
475
            # check for jump-forward
            jump_forward_reqs = batch.check_for_jump_forward()
476

Liangsheng Yin's avatar
Liangsheng Yin committed
477
478
            # check for image jump-forward
            for req in jump_forward_reqs:
479
480
481
482
483
484
485
486
487
488
489
                if req.pixel_values is not None:
                    (
                        req.input_ids,
                        req.image_offset,
                    ) = self.model_runner.model.pad_input_ids(
                        req.input_ids,
                        req.pad_value,
                        req.pixel_values.shape,
                        req.image_size,
                    )

Liangsheng Yin's avatar
Liangsheng Yin committed
490
            self.forward_queue.extend(jump_forward_reqs)
Liangsheng Yin's avatar
Liangsheng Yin committed
491
492
493
            if batch.is_empty():
                return

Lianmin Zheng's avatar
Lianmin Zheng committed
494
        # Update batch tensors
495
        self.decode_forward_ct = (self.decode_forward_ct + 1) % (1 << 30)
496
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
497
498

        # Forward
Cody Yu's avatar
Cody Yu committed
499
500
501
502
503
504
        logits, (_, _, last_logprobs) = self.model_runner.forward(
            batch,
            ForwardMode.DECODE,
            batch.return_logprob,
        )
        next_token_ids, _ = batch.sample(logits)
Lianmin Zheng's avatar
Lianmin Zheng committed
505
506
        next_token_ids = next_token_ids.cpu().tolist()

Cody Yu's avatar
Cody Yu committed
507
        # Only batch transfer the selected logprobs of the next token to CPU to reduce overhead.
Lianmin Zheng's avatar
Lianmin Zheng committed
508
        reqs = batch.reqs
Cody Yu's avatar
Cody Yu committed
509
        if last_logprobs is not None:
510
511
512
            last_logprobs = last_logprobs[
                torch.arange(len(reqs)), next_token_ids
            ].tolist()
Cody Yu's avatar
Cody Yu committed
513
514
515

        # Check finish condition
        for i, (req, next_tok_id) in enumerate(zip(reqs, next_token_ids)):
516
            req.completion_tokens_wo_jump_forward += 1
Cody Yu's avatar
Cody Yu committed
517
518
519
520
521
            req.output_ids.append(next_tok_id)
            req.check_finished()

            if last_logprobs is not None:
                req.token_logprob.append((next_tok_id, last_logprobs[i]))
Lianmin Zheng's avatar
Lianmin Zheng committed
522
523
524
525
526
527

        self.handle_finished_requests(batch)

    def handle_finished_requests(self, batch: Batch):
        output_rids = []
        output_tokens = []
Liangsheng Yin's avatar
Liangsheng Yin committed
528
        output_and_jump_forward_strs = []
Lianmin Zheng's avatar
Lianmin Zheng committed
529
530
531
532
533
534
535
536
537
538
539
540
541
        output_hit_stop_str = []
        output_skip_special_tokens = []
        output_meta_info = []
        output_finished = []
        finished_indices = []
        unfinished_indices = []
        for i, req in enumerate(batch.reqs):
            if req.finished:
                finished_indices.append(i)
            else:
                unfinished_indices.append(i)

            if req.finished or (
542
543
544
545
546
547
548
                (
                    req.stream
                    and (
                        self.decode_forward_ct % self.stream_interval == 0
                        or len(req.output_ids) == 1
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
549
550
551
            ):
                output_rids.append(req.rid)
                output_tokens.append(req.output_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
552
                output_and_jump_forward_strs.append(req.output_and_jump_forward_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
553
554
555
556
                output_hit_stop_str.append(req.hit_stop_str)
                output_skip_special_tokens.append(
                    req.sampling_params.skip_special_tokens
                )
557

Lianmin Zheng's avatar
Lianmin Zheng committed
558
                meta_info = {
559
                    "prompt_tokens": req.prompt_tokens,
560
561
                    "completion_tokens": len(req.input_ids)
                    + len(req.output_ids)
562
                    - req.prompt_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
563
                    "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
Lianmin Zheng's avatar
Lianmin Zheng committed
564
                }
565
566
                if req.return_logprob:
                    meta_info["prompt_logprob"] = req.logprob
Cody Yu's avatar
Cody Yu committed
567
                    meta_info["token_logprob"] = req.token_logprob
568
                    meta_info["normalized_prompt_logprob"] = req.normalized_logprob
Lianmin Zheng's avatar
Lianmin Zheng committed
569
570
571
572
573
574
575
576
577
                output_meta_info.append(meta_info)
                output_finished.append(req.finished)

        # Send to detokenizer
        if output_rids:
            self.out_pyobjs.append(
                BatchTokenIDOut(
                    output_rids,
                    output_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
578
                    output_and_jump_forward_strs,
Lianmin Zheng's avatar
Lianmin Zheng committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
                    output_hit_stop_str,
                    output_skip_special_tokens,
                    output_meta_info,
                    output_finished,
                )
            )

        # Remove finished reqs
        if finished_indices:
            # Update radix cache
            req_pool_indices_cpu = batch.req_pool_indices.cpu().tolist()
            for i in finished_indices:
                req = batch.reqs[i]
                req_pool_idx = req_pool_indices_cpu[i]
                token_ids = tuple(req.input_ids + req.output_ids)
                seq_len = len(token_ids) - 1
                indices = self.req_to_token_pool.req_to_token[req_pool_idx, :seq_len]
596
597
598
                prefix_len = self.tree_cache.insert(
                    token_ids[:seq_len], indices.clone()
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

                self.token_to_kv_pool.free(indices[:prefix_len])
                self.req_to_token_pool.free(req_pool_idx)
                self.tree_cache.dec_ref_counter(req.last_node)

            # Update batch tensors
            if unfinished_indices:
                batch.filter_batch(unfinished_indices)
            else:
                batch.reqs = []


class ModelRpcClient:
    def __init__(self, server_args: ServerArgs, port_args: PortArgs):
        tp_size = server_args.tp_size

        if tp_size == 1:
            # Init model
            self.model_server = ModelRpcServer()
            self.model_server.exposed_init_model(0, server_args, port_args)

            # Wrap functions
            def async_wrap(f):
                async def _func(*args, **kwargs):
                    return f(*args, **kwargs)

                return _func

            self.step = async_wrap(self.model_server.exposed_step)
        else:
            with ThreadPoolExecutor(tp_size) as executor:
                # Launch model processes
                rets = executor.map(start_model_process, port_args.model_rpc_ports)
                self.model_servers = [x[0] for x in rets]
                self.procs = [x[1] for x in rets]

                # Init model
                def init_model(i):
                    return self.model_servers[i].init_model(i, server_args, port_args)

                rets = [obtain(x) for x in executor.map(init_model, range(tp_size))]

            # Wrap functions
            def async_wrap(func_name):
                fs = [rpyc.async_(getattr(m, func_name)) for m in self.model_servers]

                async def _func(*args, **kwargs):
                    tasks = [f(*args, **kwargs) for f in fs]
                    await asyncio.gather(*[asyncio.to_thread(t.wait) for t in tasks])
                    return obtain(tasks[0].value)

                return _func

            self.step = async_wrap("step")


655
656
657
658
659
660
661
662
def _init_service(port):
    t = ThreadedServer(
        ModelRpcServer(),
        port=port,
        protocol_config={"allow_pickle": True, "sync_request_timeout": 1800},
    )
    t.start()

Lianmin Zheng's avatar
Lianmin Zheng committed
663

664
def start_model_process(port):
Lianmin Zheng's avatar
Lianmin Zheng committed
665
666
667
668
669
670
671
672
673
674
    proc = multiprocessing.Process(target=_init_service, args=(port,))
    proc.start()
    time.sleep(1)

    repeat_count = 0
    while repeat_count < 20:
        try:
            con = rpyc.connect(
                "localhost",
                port,
675
                config={"allow_pickle": True, "sync_request_timeout": 1800},
Lianmin Zheng's avatar
Lianmin Zheng committed
676
677
678
679
680
681
682
683
684
685
            )
            break
        except ConnectionRefusedError:
            time.sleep(1)
        repeat_count += 1
    if repeat_count == 20:
        raise RuntimeError("init rpc env error!")

    assert proc.is_alive()
    return con.root, proc