request_processing.rs 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use serde_json::{from_str, to_string, to_vec};
use std::time::Instant;

use sglang_router_rs::openai_api_types::{
    ChatCompletionRequest, ChatMessage, CompletionRequest, GenerateParameters, GenerateRequest,
    SamplingParams, StringOrArray, UserMessageContent,
};
9
use sglang_router_rs::routers::request_adapter::{RouteableRequest, ToPdRequest};
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

// Sample request data for benchmarks
fn create_sample_generate_request() -> GenerateRequest {
    GenerateRequest {
        text: Some("Write a story about artificial intelligence".to_string()),
        input_ids: None,
        prompt: None,
        parameters: Some(GenerateParameters {
            max_new_tokens: Some(100),
            temperature: Some(0.8),
            top_p: Some(0.9),
            top_k: Some(50),
            repetition_penalty: Some(1.0),
            ..Default::default()
        }),
        sampling_params: Some(SamplingParams {
            temperature: Some(0.8),
            top_p: Some(0.9),
            top_k: Some(50),
            frequency_penalty: Some(0.0),
            presence_penalty: Some(0.0),
            repetition_penalty: Some(1.0),
            ..Default::default()
        }),
        stream: false,
        return_logprob: false,
    }
}

fn create_sample_chat_completion_request() -> ChatCompletionRequest {
    ChatCompletionRequest {
        model: "gpt-3.5-turbo".to_string(),
        messages: vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "You are a helpful assistant".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text(
                    "Explain quantum computing in simple terms".to_string(),
                ),
                name: None,
            },
        ],
        max_tokens: Some(150),
        max_completion_tokens: Some(150),
        temperature: Some(0.7),
        top_p: Some(1.0),
        n: Some(1),
        stream: false,
62
        stream_options: None,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        stop: None,
        presence_penalty: Some(0.0),
        frequency_penalty: Some(0.0),
        logit_bias: None,
        logprobs: false,
        top_logprobs: None,
        user: None,
        response_format: None,
        seed: None,
        tools: None,
        tool_choice: None,
        parallel_tool_calls: Some(true),
        function_call: None,
        functions: None,
    }
}

fn create_sample_completion_request() -> CompletionRequest {
    CompletionRequest {
        model: "text-davinci-003".to_string(),
        prompt: StringOrArray::String("Complete this sentence: The future of AI is".to_string()),
        suffix: None,
        max_tokens: Some(50),
        temperature: Some(0.8),
        top_p: Some(1.0),
        n: Some(1),
        stream: false,
90
        stream_options: None,
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        logprobs: None,
        echo: false,
        stop: None,
        presence_penalty: Some(0.0),
        frequency_penalty: Some(0.0),
        best_of: Some(1),
        logit_bias: None,
        user: None,
        seed: None,
    }
}

fn create_large_chat_completion_request() -> ChatCompletionRequest {
    let mut messages = vec![ChatMessage::System {
        role: "system".to_string(),
        content: "You are a helpful assistant with extensive knowledge.".to_string(),
        name: None,
    }];

    // Add many user/assistant pairs to simulate a long conversation
    for i in 0..50 {
        messages.push(ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text(format!("Question {}: What do you think about topic number {} which involves complex reasoning about multiple interconnected systems and their relationships?", i, i)),
            name: None,
        });
        messages.push(ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some(format!("Answer {}: This is a detailed response about topic {} that covers multiple aspects and provides comprehensive analysis of the interconnected systems you mentioned.", i, i)),
            name: None,
            tool_calls: None,
            function_call: None,
        });
    }

    ChatCompletionRequest {
        model: "gpt-4".to_string(),
        messages,
        max_tokens: Some(1000),
        max_completion_tokens: Some(1000),
        temperature: Some(0.7),
        top_p: Some(0.95),
        n: Some(1),
        stream: false,
135
        stream_options: None,
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        stop: None,
        presence_penalty: Some(0.1),
        frequency_penalty: Some(0.1),
        logit_bias: None,
        logprobs: false,
        top_logprobs: Some(5),
        user: Some("benchmark_user".to_string()),
        response_format: None,
        seed: Some(42),
        tools: None,
        tool_choice: None,
        parallel_tool_calls: Some(true),
        function_call: None,
        functions: None,
    }
}

// Benchmark JSON serialization
fn bench_json_serialization(c: &mut Criterion) {
    let mut group = c.benchmark_group("json_serialization");

    let generate_req = create_sample_generate_request();
    let chat_req = create_sample_chat_completion_request();
    let completion_req = create_sample_completion_request();
    let large_chat_req = create_large_chat_completion_request();

    group.bench_function("generate_request", |b| {
        b.iter(|| {
            let json = to_string(black_box(&generate_req)).unwrap();
            black_box(json);
        });
    });

    group.bench_function("chat_completion_request", |b| {
        b.iter(|| {
            let json = to_string(black_box(&chat_req)).unwrap();
            black_box(json);
        });
    });

    group.bench_function("completion_request", |b| {
        b.iter(|| {
            let json = to_string(black_box(&completion_req)).unwrap();
            black_box(json);
        });
    });

    group.bench_function("large_chat_completion_request", |b| {
        b.iter(|| {
            let json = to_string(black_box(&large_chat_req)).unwrap();
            black_box(json);
        });
    });

    group.bench_function("generate_request_to_bytes", |b| {
        b.iter(|| {
            let bytes = to_vec(black_box(&generate_req)).unwrap();
            black_box(bytes);
        });
    });

    group.finish();
}

// Benchmark JSON deserialization
fn bench_json_deserialization(c: &mut Criterion) {
    let mut group = c.benchmark_group("json_deserialization");

    let generate_json = to_string(&create_sample_generate_request()).unwrap();
    let chat_json = to_string(&create_sample_chat_completion_request()).unwrap();
    let completion_json = to_string(&create_sample_completion_request()).unwrap();
    let large_chat_json = to_string(&create_large_chat_completion_request()).unwrap();

    group.bench_function("generate_request", |b| {
        b.iter(|| {
            let req: GenerateRequest = from_str(black_box(&generate_json)).unwrap();
            black_box(req);
        });
    });

    group.bench_function("chat_completion_request", |b| {
        b.iter(|| {
            let req: ChatCompletionRequest = from_str(black_box(&chat_json)).unwrap();
            black_box(req);
        });
    });

    group.bench_function("completion_request", |b| {
        b.iter(|| {
            let req: CompletionRequest = from_str(black_box(&completion_json)).unwrap();
            black_box(req);
        });
    });

    group.bench_function("large_chat_completion_request", |b| {
        b.iter(|| {
            let req: ChatCompletionRequest = from_str(black_box(&large_chat_json)).unwrap();
            black_box(req);
        });
    });

    group.finish();
}

// Benchmark request adaptation from OpenAI to PD format
fn bench_request_adaptation(c: &mut Criterion) {
    let mut group = c.benchmark_group("request_adaptation");

    let generate_req = create_sample_generate_request();
    let chat_req = create_sample_chat_completion_request();
    let completion_req = create_sample_completion_request();
    let large_chat_req = create_large_chat_completion_request();

    group.bench_function("generate_to_pd", |b| {
        b.iter(|| {
            let pd_req = black_box(generate_req.clone()).to_pd_request();
            black_box(pd_req);
        });
    });

    group.bench_function("chat_completion_to_pd", |b| {
        b.iter(|| {
            let pd_req = black_box(chat_req.clone()).to_pd_request();
            black_box(pd_req);
        });
    });

    group.bench_function("completion_to_pd", |b| {
        b.iter(|| {
            let pd_req = black_box(completion_req.clone()).to_pd_request();
            black_box(pd_req);
        });
    });

    group.bench_function("large_chat_completion_to_pd", |b| {
        b.iter(|| {
            let pd_req = black_box(large_chat_req.clone()).to_pd_request();
            black_box(pd_req);
        });
    });

    group.finish();
}

// Benchmark regular routing (RouteableRequest methods)
fn bench_regular_routing(c: &mut Criterion) {
    let mut group = c.benchmark_group("regular_routing");

    let generate_req = create_sample_generate_request();
    let chat_req = create_sample_chat_completion_request();
    let completion_req = create_sample_completion_request();

    group.bench_function("generate_to_json", |b| {
        b.iter(|| {
            let json = black_box(&generate_req).to_json().unwrap();
            black_box(json);
        });
    });

    group.bench_function("generate_to_bytes", |b| {
        b.iter(|| {
            let bytes = black_box(&generate_req).to_bytes().unwrap();
            black_box(bytes);
        });
    });

    group.bench_function("chat_completion_to_json", |b| {
        b.iter(|| {
            let json = black_box(&chat_req).to_json().unwrap();
            black_box(json);
        });
    });

    group.bench_function("chat_completion_to_bytes", |b| {
        b.iter(|| {
            let bytes = black_box(&chat_req).to_bytes().unwrap();
            black_box(bytes);
        });
    });

    group.bench_function("completion_to_json", |b| {
        b.iter(|| {
            let json = black_box(&completion_req).to_json().unwrap();
            black_box(json);
        });
    });

    group.finish();
}

// Benchmark throughput with different request sizes
fn bench_throughput_by_size(c: &mut Criterion) {
    let mut group = c.benchmark_group("throughput_by_size");

    // Create requests of different sizes
    let small_generate = GenerateRequest {
        text: Some("Hi".to_string()),
        input_ids: None,
        prompt: None,
        parameters: None,
        sampling_params: None,
        stream: false,
        return_logprob: false,
    };

    let medium_generate = GenerateRequest {
        text: Some("Write a medium length story about AI".repeat(10)),
        input_ids: None,
        prompt: None,
        parameters: None,
        sampling_params: None,
        stream: false,
        return_logprob: false,
    };

    let large_generate = GenerateRequest {
        text: Some("Write a very long and detailed story about artificial intelligence and its impact on society".repeat(100)),
        input_ids: None,
        prompt: None,
        parameters: None,
        sampling_params: None,
        stream: false,
        return_logprob: false,
    };

    for (name, req) in [
        ("small", &small_generate),
        ("medium", &medium_generate),
        ("large", &large_generate),
    ] {
        let json = to_string(req).unwrap();
        let size_bytes = json.len();

        group.throughput(Throughput::Bytes(size_bytes as u64));
        group.bench_with_input(BenchmarkId::new("serialize", name), &req, |b, req| {
            b.iter(|| {
                let json = to_string(black_box(req)).unwrap();
                black_box(json);
            });
        });

        group.bench_with_input(
            BenchmarkId::new("deserialize", name),
            &json,
            |b, json_str| {
                b.iter(|| {
                    let req: GenerateRequest = black_box(from_str(json_str)).unwrap();
                    black_box(req);
                });
            },
        );

        group.bench_with_input(BenchmarkId::new("adapt_to_pd", name), &req, |b, req| {
            b.iter(|| {
                let pd_req = (*req).clone().to_pd_request();
                black_box(pd_req);
            });
        });
    }

    group.finish();
}

// Benchmark full round-trip: deserialize -> adapt -> serialize
fn bench_full_round_trip(c: &mut Criterion) {
    let mut group = c.benchmark_group("full_round_trip");

    let generate_json = to_string(&create_sample_generate_request()).unwrap();
    let chat_json = to_string(&create_sample_chat_completion_request()).unwrap();
    let completion_json = to_string(&create_sample_completion_request()).unwrap();

    group.bench_function("generate_openai_to_pd_pipeline", |b| {
        b.iter(|| {
            // Deserialize OpenAI request
            let req: GenerateRequest = from_str(black_box(&generate_json)).unwrap();
            // Adapt to PD format
            let pd_req = req.to_pd_request();
            // Serialize PD request
            let pd_json = to_string(&pd_req).unwrap();
            black_box(pd_json);
        });
    });

    group.bench_function("chat_completion_openai_to_pd_pipeline", |b| {
        b.iter(|| {
            let req: ChatCompletionRequest = from_str(black_box(&chat_json)).unwrap();
            let pd_req = req.to_pd_request();
            let pd_json = to_string(&pd_req).unwrap();
            black_box(pd_json);
        });
    });

    group.bench_function("completion_openai_to_pd_pipeline", |b| {
        b.iter(|| {
            let req: CompletionRequest = from_str(black_box(&completion_json)).unwrap();
            let pd_req = req.to_pd_request();
            let pd_json = to_string(&pd_req).unwrap();
            black_box(pd_json);
        });
    });

    group.bench_function("generate_regular_routing_pipeline", |b| {
        b.iter(|| {
            // Deserialize OpenAI request
            let req: GenerateRequest = from_str(black_box(&generate_json)).unwrap();
            // Convert to JSON for regular routing
            let routing_json = req.to_json().unwrap();
            black_box(routing_json);
        });
    });

    group.finish();
}

fn benchmark_summary(c: &mut Criterion) {
    let group = c.benchmark_group("benchmark_summary");

    println!("\nSGLang Router Performance Benchmark Suite");
    println!("=============================================");

    // Quick performance overview
    let generate_req = create_sample_generate_request();

    println!("\nQuick Performance Overview:");

    // Measure serialization
    let start = Instant::now();
    for _ in 0..1000 {
        let _ = black_box(to_string(&generate_req).unwrap());
    }
    let serialize_time = start.elapsed().as_nanos() / 1000;
    println!("  * Serialization (avg):     {:>8} ns/req", serialize_time);

    // Measure deserialization
    let json = to_string(&generate_req).unwrap();
    let start = Instant::now();
    for _ in 0..1000 {
        let _: GenerateRequest = black_box(from_str(&json).unwrap());
    }
    let deserialize_time = start.elapsed().as_nanos() / 1000;
    println!(
        "  * Deserialization (avg):   {:>8} ns/req",
        deserialize_time
    );

    // Measure adaptation
    let start = Instant::now();
    for _ in 0..1000 {
        let _ = black_box(generate_req.clone().to_pd_request());
    }
    let adapt_time = start.elapsed().as_nanos() / 1000;
    println!("  * PD Adaptation (avg):     {:>8} ns/req", adapt_time);

    // Calculate ratios
    let total_pipeline = serialize_time + deserialize_time + adapt_time;
    println!("  * Total Pipeline (avg):    {:>8} ns/req", total_pipeline);

    println!("\nPerformance Insights:");
    if deserialize_time > serialize_time * 2 {
        println!("  • Deserialization is significantly faster than serialization");
    }
    if adapt_time < serialize_time / 10 {
        println!(
            "  • PD adaptation overhead is negligible ({:.1}% of serialization)",
            (adapt_time as f64 / serialize_time as f64) * 100.0
        );
    }
    if total_pipeline < 10_000 {
        println!("  • Total pipeline latency is excellent (< 10μs)");
    }

    println!("\nRecommendations:");
    if serialize_time > deserialize_time {
        println!("  • Focus optimization efforts on serialization rather than deserialization");
    }
    println!("  • PD mode overhead is minimal - safe to use for latency-sensitive workloads");
    println!("  • Consider batching small requests to improve overall throughput");

    println!("\n{}", "=".repeat(50));

    group.finish();
}

criterion_group!(
    benches,
    benchmark_summary,
    bench_json_serialization,
    bench_json_deserialization,
    bench_request_adaptation,
    bench_regular_routing,
    bench_throughput_by_size,
    bench_full_round_trip
);
criterion_main!(benches);