bench_rmsnorm.py 9.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Benchmarks SGLang RMSNorm kernels versus vLLM and FlashInfer across
# (batch_size, seq_len, hidden_size) and prints speed-up.
import argparse
import itertools
import re
from typing import List, Optional, Tuple, Union

import sgl_kernel
import torch
import torch.nn as nn
import triton
import triton.testing
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
from sgl_kernel.utils import is_arch_support_pdl
from vllm import _custom_ops as vllm_ops


def str2int_list(arg: str) -> List[int]:
    if arg in ("", None):
        return []
    if re.fullmatch(r"\d+(,\d+)*", arg.strip()) is None:
        raise argparse.ArgumentTypeError(f"Bad int list: {arg}")
    return [int(x) for x in arg.split(",")]


class HuggingFaceRMSNorm(nn.Module):
    def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(
        self,
        x: torch.Tensor,
        residual: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        orig_dtype = x.dtype
        x = x.to(torch.float32)
        if residual is not None:
            x = x + residual.to(torch.float32)
            residual = x.to(orig_dtype)

        variance = x.pow(2).mean(dim=-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.variance_epsilon)
        x = x.to(orig_dtype) * self.weight
        if residual is None:
            return x
        else:
            return x, residual


def rmsnorm_naive(
    x: torch.Tensor,
    weight: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
    eps: float = 1e-6,
):
    naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
    naive_norm.weight = nn.Parameter(weight)
    naive_norm = naive_norm.to(x.device)

    orig_shape = x.shape
    x = x.view(-1, x.shape[-1])
    if residual is not None:
        residual = residual.view(-1, residual.shape[-1])

    output = naive_norm(x, residual)

    if isinstance(output, tuple):
        output = (output[0].view(orig_shape), output[1].view(orig_shape))
    else:
        output = output.view(orig_shape)
    return output


def rmsnorm_flashinfer(
    x: torch.Tensor,
    weight: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
    eps: float = 1e-6,
):
    orig_shape = x.shape
    x = x.view(-1, x.shape[-1])
    if residual is not None:
        residual = residual.view(-1, residual.shape[-1])

    if residual is not None:
        fused_add_rmsnorm(x, residual, weight, eps)
        output = (x, residual)
    else:
        output = rmsnorm(x, weight, eps)

    if isinstance(output, tuple):
        output = (output[0].view(orig_shape), output[1].view(orig_shape))
    else:
        output = output.view(orig_shape)
    return output


def rmsnorm_vllm(
    x: torch.Tensor,
    weight: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
    eps: float = 1e-6,
):
    orig_shape = x.shape
    x = x.view(-1, x.shape[-1])
    if residual is not None:
        residual = residual.view(-1, residual.shape[-1])

    if residual is not None:
        vllm_ops.fused_add_rms_norm(x, residual, weight, eps)
        output = (x, residual)
    else:
        out = torch.empty_like(x)
        vllm_ops.rms_norm(out, x, weight, eps)
        output = out

    if isinstance(output, tuple):
        output = (output[0].view(orig_shape), output[1].view(orig_shape))
    else:
        output = output.view(orig_shape)
    return output


def rmsnorm_sglang(
    x: torch.Tensor,
    weight: torch.Tensor,
    residual: Optional[torch.Tensor] = None,
    eps: float = 1e-6,
    enable_pdl: Optional[bool] = None,
):
    orig_shape = x.shape
    x = x.view(-1, x.shape[-1])
    if residual is not None:
        residual = residual.view(-1, residual.shape[-1])

    if enable_pdl is None:
        enable_pdl = is_arch_support_pdl()

    if residual is not None:
        sgl_kernel.fused_add_rmsnorm(x, residual, weight, eps, enable_pdl=enable_pdl)
        output = (x, residual)
    else:
        out = torch.empty_like(x)
        sgl_kernel.rmsnorm(x, weight, eps, out=out, enable_pdl=enable_pdl)
        output = out

    if isinstance(output, tuple):
        output = (output[0].view(orig_shape), output[1].view(orig_shape))
    else:
        output = output.view(orig_shape)
    return output


def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
    dtype = torch.bfloat16
    x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device="cuda")
    weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
    residual = torch.randn_like(x) if use_residual else None

    output_naive = rmsnorm_naive(
        x.clone(), weight, residual.clone() if residual is not None else None
    )
    output_flashinfer = rmsnorm_flashinfer(
        x.clone(), weight, residual.clone() if residual is not None else None
    )
    output_vllm = rmsnorm_vllm(
        x.clone(), weight, residual.clone() if residual is not None else None
    )
    output_sglang = rmsnorm_sglang(
        x.clone(), weight, residual.clone() if residual is not None else None
    )

    if use_residual:
        output_naive = output_naive[0]
        output_flashinfer = output_flashinfer[0]
        output_vllm = output_vllm[0]
        output_sglang = output_sglang[0]

    print(f"Naive output={output_naive}")
    print(f"FlashInfer output={output_flashinfer}")
    print(f"VLLM output={output_vllm}")
    print(f"SGLang output={output_sglang}")

    if (
        torch.allclose(output_naive, output_flashinfer, atol=1e-2, rtol=1e-2)
        and torch.allclose(output_naive, output_vllm, atol=1e-2, rtol=1e-2)
        and torch.allclose(output_naive, output_sglang, atol=1e-2, rtol=1e-2)
    ):
        print("✅ All implementations match")
    else:
        print("❌ Implementations differ")


default_batch_sizes = [2**i for i in range(0, 7, 2)]  # 1, 4, 16, 64
default_seq_lens = [2**i for i in range(6, 11, 1)]  # 64, 128, 256, 512, 1024
default_hidden_sizes = [32 * 128, 48 * 128]  # 4096, 6144


def make_configs(bsizes: List[int], slens: List[int], hsizes: List[int]) -> List[Tuple]:
    return list(itertools.product(bsizes, slens, hsizes))


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size", "seq_len", "hidden_size"],
        x_vals=[],
        line_arg="provider",
        line_vals=["huggingface", "flashinfer", "vllm", "sglang"],
        line_names=["HuggingFace", "FlashInfer", "vLLM", "SGL Kernel"],
        styles=[("blue", "-"), ("green", "-"), ("red", "-"), ("orange", "-")],
        ylabel="µs (median)  or  × (speed-up)",
        plot_name="rmsnorm-performance",
        args={},
    )
)
def benchmark(batch_size, seq_len, hidden_size, provider, use_residual):
    device = torch.device("cuda")
    dtype = torch.bfloat16

    x = torch.randn(batch_size, seq_len, hidden_size, dtype=dtype, device=device)
    weight = torch.ones(hidden_size, dtype=dtype, device=device)
    residual = torch.randn_like(x) if use_residual else None

    # timing helper
    def timed(fn):
        for _ in range(5):
            fn()
        torch.cuda.synchronize()
        ms, qmin, qmax = triton.testing.do_bench_cudagraph(
            fn, quantiles=[0.5, 0.2, 0.8]
        )
        return 1000 * ms, 1000 * qmax, 1000 * qmin

    if provider == "huggingface":
        return timed(
            lambda: rmsnorm_naive(
                x.clone(),
                weight,
                residual.clone() if residual is not None else None,
            )
        )
    elif provider == "flashinfer":
        return timed(
            lambda: rmsnorm_flashinfer(
                x.clone(),
                weight,
                residual.clone() if residual is not None else None,
            )
        )
    elif provider == "vllm":
        return timed(
            lambda: rmsnorm_vllm(
                x.clone(),
                weight,
                residual.clone() if residual is not None else None,
            )
        )
    elif provider == "sglang":
        return timed(
            lambda: rmsnorm_sglang(
                x.clone(),
                weight,
                residual.clone() if residual is not None else None,
            )
        )

    # provider == "speedup"
    t_ref, _, _ = timed(
        lambda: rmsnorm_vllm(
            x.clone(),
            weight,
            residual.clone() if residual is not None else None,
        )
    )
    t_sgl, _, _ = timed(
        lambda: rmsnorm_sglang(
            x.clone(),
            weight,
            residual.clone() if residual is not None else None,
        )
    )
    spd = t_ref / t_sgl
    return (spd, spd, spd)


if __name__ == "__main__":
    p = argparse.ArgumentParser("RMSNorm kernel benchmark")
    p.add_argument("--batch_sizes", type=str2int_list, default=default_batch_sizes)
    p.add_argument("--seq_lens", type=str2int_list, default=default_seq_lens)
    p.add_argument("--hidden_sizes", type=str2int_list, default=default_hidden_sizes)
    p.add_argument(
        "--use_residual", action="store_true", help="Whether to use residual connection"
    )
    p.add_argument("--verify_only", action="store_true")
    args = p.parse_args()

    # coerce lists
    if isinstance(args.batch_sizes, str):
        args.batch_sizes = str2int_list(args.batch_sizes)
    if isinstance(args.seq_lens, str):
        args.seq_lens = str2int_list(args.seq_lens)
    if isinstance(args.hidden_sizes, str):
        args.hidden_sizes = str2int_list(args.hidden_sizes)

    # patch perf_report grid
    benchmark_grid = make_configs(args.batch_sizes, args.seq_lens, args.hidden_sizes)
    if hasattr(benchmark, "benchmarks"):
        benchmark.benchmarks.x_vals = benchmark_grid
    else:
        benchmark.benchmark.x_vals = benchmark_grid

    if args.verify_only:
        ok = calculate_diff(4, 128, args.hidden_sizes[0], args.use_residual)
        print("✅ sanity pass" if ok else "❌ mismatch")
    else:
        benchmark.run(print_data=True, use_residual=args.use_residual)