bench_qserve_w4a8_gemm.py 5.91 KB
Newer Older
HandH1998's avatar
HandH1998 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import copy
import itertools

import torch
import triton
from sgl_kernel import (
    int8_scaled_mm,
    qserve_w4a8_per_chn_gemm,
    qserve_w4a8_per_group_gemm,
)


def to_int8(tensor: torch.Tensor) -> torch.Tensor:
    return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)


WEIGHT_SHAPES = {
    "meta-llama/Llama-3.1-8B-Instruct": [
        ([4096, 6144], 1),
        ([4096, 4096], 0),
        ([4096, 28672], 1),
        ([14336, 4096], 0),
    ],
    "meta-llama/Llama-3.3-70B-Instruct": [
        ([8192, 10240], 1),
        ([8192, 8192], 0),
        ([8192, 57344], 1),
        ([28672, 8192], 0),
    ],
    "mistralai/Mistral-Large-Instruct-2407": [
        ([12288, 14336], 1),
        ([12288, 12288], 0),
        ([12288, 57344], 1),
        ([28672, 12288], 0),
    ],
    "Qwen/Qwen2.5-7B-Instruct": [
        ([3584, 4608], 1),
        ([3584, 3584], 0),
        ([3584, 37888], 1),
        ([18944, 3584], 0),
    ],
    "Qwen/Qwen2.5-32B-Instruct": [
        ([5120, 7168], 1),
        ([5120, 5120], 0),
        ([5120, 55296], 1),
        ([27648, 5120], 0),
    ],
    "Qwen/Qwen2.5-72B-Instruct": [
        ([8192, 10240], 1),
        ([8192, 8192], 0),
        ([8192, 59136], 1),
        ([29568, 8192], 0),
    ],
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
        ([2048, 3072], 1),
        ([2048, 4096], 1),
        ([2048, 2048], 0),
        ([2048, 576], 0),
        ([2048, 21888], 1),
        ([10944, 2048], 0),
        ([2048, 2816], 1),
        ([1408, 2048], 0),
    ],
}


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size"],
        x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048],
        x_log=False,
        line_arg="provider",
        line_vals=["FP16", "W8A8", "Qserve_W4A8_Per_Channel", "Qserve_W4A8_Per_Group"],
        line_names=["FP16", "W8A8", "Qserve_W4A8_Per_Channel", "Qserve_W4A8_Per_Group"],
        styles=[("blue", "-"), ("orange", "-"), ("green", "-"), ("red", "-")],
        ylabel="ms",
        plot_name="FP16_vs_W8A8_vs_Qserve_W4A8_GEMM",
        args={},
    )
)
def benchmark(batch_size, provider, N, K):
    M = batch_size
    # For W8A8
    a = to_int8(torch.randn((M, K), device="cuda") * 5)
    b = to_int8(torch.randn((N, K), device="cuda").t() * 5)
    a_fp16 = a.to(torch.float16)
    b_fp16 = b.to(torch.float16)
    scale_a = torch.randn((M,), device="cuda", dtype=torch.float32)
    scale_b = torch.randn((N,), device="cuda", dtype=torch.float32)

    # For Qserve W4A8 per channel
    a_qserve_chn = a
    # two int4s pack into one int8
    b_qserve_chn = to_int8(torch.randn((N, K // 2), device="cuda") * 5)
    # b_qserve_chn = b.t().contiguous()
    scale_a_qserve_chn = scale_a.to(torch.float16)
    scale_b_qserve_chn = scale_b.to(torch.float16)
    szero_b_qserve_chn = torch.randn((N,), device="cuda", dtype=torch.float16)
    a_sum_qserve_chn = torch.randn((M,), device="cuda", dtype=torch.float16)

    # For Qserve W4A8 per group
    group_size = 128
    assert K % group_size == 0, "K must be divisible by group_size"
    a_qserve_group = a
    # two int4s pack into one int8
    b_qserve_group = to_int8(torch.randn((N, K // 2), device="cuda") * 5)
    # b_qserve_group = b.t().contiguous()
    scale_a_qserve_group = scale_a.to(torch.float16)
    scale_b_qserve_group = scale_b.to(torch.float16)
    scale_i8_b_qserve_group = to_int8(
        torch.randn((K // group_size, N), device="cuda", dtype=torch.float16)
    )
    zero_i8_b_qserve_group = to_int8(
        torch.randn((K // group_size, N), device="cuda", dtype=torch.float16)
    )

    quantiles = [0.5, 0.2, 0.8]
    if provider == "FP16":
120
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
HandH1998's avatar
HandH1998 committed
121
122
123
124
            lambda: torch.matmul(a_fp16, b_fp16),
            quantiles=quantiles,
        )
    if provider == "W8A8":
125
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
HandH1998's avatar
HandH1998 committed
126
127
128
129
            lambda: int8_scaled_mm(a, b, scale_a, scale_b, torch.float16),
            quantiles=quantiles,
        )
    if provider == "Qserve_W4A8_Per_Channel":
130
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
HandH1998's avatar
HandH1998 committed
131
132
133
134
135
136
137
138
139
140
141
            lambda: qserve_w4a8_per_chn_gemm(
                a_qserve_chn,
                b_qserve_chn,
                scale_b_qserve_chn,
                scale_a_qserve_chn,
                szero_b_qserve_chn,
                a_sum_qserve_chn,
            ),
            quantiles=quantiles,
        )
    if provider == "Qserve_W4A8_Per_Group":
142
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
HandH1998's avatar
HandH1998 committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            lambda: qserve_w4a8_per_group_gemm(
                a_qserve_group,
                b_qserve_group,
                zero_i8_b_qserve_group,
                scale_i8_b_qserve_group,
                scale_b_qserve_group,
                scale_a_qserve_group,
            ),
            quantiles=quantiles,
        )

    return ms, max_ms, min_ms


def prepare_shapes(args):
    KN_model_names = []
    models_tps = list(itertools.product(args.models, args.tp_sizes))
    for model, tp_size in models_tps:
        assert model in WEIGHT_SHAPES
        for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
            KN[tp_split_dim] = KN[tp_split_dim] // tp_size
            KN.append(model)
            KN_model_names.append(KN)
    return KN_model_names


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--models",
        nargs="+",
        type=str,
        default=["meta-llama/Llama-3.1-8B-Instruct"],
        help="List of models to benchmark",
    )
    parser.add_argument(
        "--tp-sizes",
        nargs="+",
        type=int,
        default=[1],
        help="List of tensor parallel sizes",
    )
    args = parser.parse_args()

    KN_model_names = prepare_shapes(args)
    for K, N, model_name in KN_model_names:
        print(f"{model_name} N={N} K={K}: ")
        benchmark.run(
            print_data=True,
            N=N,
            K=K,
        )

    print("Benchmark finished!")