bench_fp4_gemm.py 5.6 KB
Newer Older
Elfie Guo's avatar
Elfie Guo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import copy
import csv
import itertools

import pytest
import torch
import triton
from flashinfer import mm_fp4
from sgl_kernel import cutlass_scaled_fp4_mm, scaled_fp4_quant

FLOAT4_E2M1_MAX = 6.0
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max


def get_weight_shapes(args):
    models_tps = args.tp_sizes

    if models_tps == [4]:
        return [[1024, 3584], [7168, 256], [7168, 2304], [9216, 3584]]

    if models_tps == [8]:
        return [[512, 3584], [7168, 128], [7168, 1152], [4608, 3584]]
    return [
        [1024, 3584],
        [7168, 256],
        [7168, 2304],
        [9216, 3584],
        [512, 3584],
        [7168, 128],
        [7168, 1152],
        [4608, 3584],
    ]


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size"],
        x_vals=[
            1,
            2,
            4,
            8,
            16,
            32,
            64,
            128,
            256,
            512,
            1024,
            2048,
            3072,
            4096,
            8192,
            16384,
        ],
        # x_vals = [64],
        x_log=False,
        line_arg="provider",
        line_vals=["cutlass", "cudnn", "trtllm"],
        line_names=["baseline cutlass fp4", "cudnn fp4", "trtllm fp4"],
        styles=[("red", "solid"), ("blue", "solid"), ("green", "solid")],
        ylabel="latency (ms)",
        plot_name="fp4_gemm_benchmark",
        args={},
    )
)
def benchmark(batch_size, provider, N, K, dtype, correctness, csv_file):
    M = batch_size
    packed_k = K
    K = 2 * packed_k
    a_dtype = torch.randn((M, K), dtype=dtype, device="cuda")
    b_dtype = torch.randn((N, K), dtype=dtype, device="cuda")
    a_global_scale = (
        (FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a_dtype.flatten(), dim=-1)
    ).to(torch.float32)
    b_global_scale = (
        (FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(b_dtype.flatten(), dim=-1)
    ).to(torch.float32)

    alpha = 1.0 / (a_global_scale * b_global_scale)
    a_fp4, a_scale_interleaved = scaled_fp4_quant(a_dtype, a_global_scale)
    # print("a_fp4", a_fp4)
    b_fp4, b_scale_interleaved = scaled_fp4_quant(b_dtype, b_global_scale)
    res_fi = torch.empty((M, N), dtype=dtype, device="cuda")

    quantiles = [0.5, 0.2, 0.8]
    if provider == "cutlass":
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
            lambda: cutlass_scaled_fp4_mm(
                a_fp4, b_fp4, a_scale_interleaved, b_scale_interleaved, alpha, dtype
            ),
            quantiles=quantiles,
        )
    if provider == "cudnn":
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
            lambda: mm_fp4(
                a_fp4,
                b_fp4.T,
                a_scale_interleaved,
                b_scale_interleaved.T,
                alpha,
                dtype,
                res_fi,
            ),
            quantiles=quantiles,
        )
    if provider == "trtllm":
        a_scale_interleaved = a_scale_interleaved.to(torch.uint8)
        b_scale_interleaved = b_scale_interleaved.to(torch.uint8)
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
            lambda: mm_fp4(
                a_fp4,
                b_fp4.T,
                a_scale_interleaved,
                b_scale_interleaved.T,
                alpha,
                dtype,
                res_fi,
                backend="trtllm",
            ),
            quantiles=quantiles,
        )
    if correctness:
        res_cutlass = cutlass_scaled_fp4_mm(
            a_fp4, b_fp4, a_scale_interleaved, b_scale_interleaved, alpha, dtype
        )
        mm_fp4(
            a_fp4,
            b_fp4.T,
            a_scale_interleaved,
            b_scale_interleaved.T,
            alpha,
            dtype,
            res_fi,
            backend="cudnn",
        )
        assert torch.allclose(
            res_fi, res_cutlass, atol=1e-3, rtol=1e-3
        ), "cudnn fp4 doesn't match cutlass fp4"
        mm_fp4(
            a_fp4,
            b_fp4.T,
            a_scale_interleaved,
            b_scale_interleaved.T,
            alpha,
            dtype,
            res_fi,
            backend="trtllm",
        )
        assert torch.allclose(
            res_fi, res_cutlass, atol=1e-3, rtol=1e-3
        ), "trtllm fp4 doesn't match cutlass fp4"

    if csv_file:
        with open(csv_file, "a", newline="") as f:
            writer = csv.writer(f)
            writer.writerow([provider, M, N, K, ms])

    return ms, min_ms, max_ms


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--tp-sizes",
        nargs="+",
        type=int,
        default=[1],
        help="List of tensor parallel sizes",
    )
    parser.add_argument(
        "--dtype",
        type=torch.dtype,
        default=torch.bfloat16,
        help="Data type",
    )
    parser.add_argument(
        "--correctness",
        action="store_true",
        help="Check correctness",
    )
    parser.add_argument(
        "--csv",
        type=str,
        default="results_cutlass_cudnn.csv",
        help="CSV file to save results",
    )
    args = parser.parse_args()

    if args.csv:
        with open(args.csv, "w", newline="") as f:
            writer = csv.writer(f)
            writer.writerow(["provider", "m", "n", "k", "time_ms"])

    NKs = get_weight_shapes(args)
    for N, K in NKs:
        print(f"DeepSeek-R1-0528-FP4 N={N} K={K}: ")
        benchmark.run(
            print_data=True,
            N=N,
            K=K,
            dtype=args.dtype,
            correctness=args.correctness,
            csv_file=args.csv,
        )

    print("Benchmark finished!")