bench_dsv3_fused_a_gemm.py 1.41 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import argparse

import torch
import torch.nn.functional as F
import triton
import triton.testing
from sgl_kernel import dsv3_fused_a_gemm


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["num_tokens"],
        x_vals=[i + 1 for i in range(16)],
        x_log=False,
        line_arg="impl",
        line_vals=["torch", "sgl-kernel"],
        line_names=["torch (bf16)", "dsv3_fused_a_gemm"],
        styles=[("blue", "-"), ("orange", "-")],
        ylabel="TFLOPs",
        plot_name="bf16 dsv3 fused a GEMM throughput",
        args={},
    )
)
def benchmark(num_tokens, impl):
    kHdIn = 7168
    kHdOut = 2112
    M, K, N = num_tokens, kHdIn, kHdOut

    mat_a = torch.randn((M, K), dtype=torch.bfloat16, device="cuda").contiguous()
    mat_b = torch.randn((N, K), dtype=torch.bfloat16, device="cuda").transpose(0, 1)

    quantiles = [0.5, 0.2, 0.8]

    if impl == "torch":

        def runner():
            F.linear(mat_a, mat_b.T)

    elif impl == "sgl-kernel":

        def runner():
            dsv3_fused_a_gemm(mat_a, mat_b)

44
    ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(runner, quantiles=quantiles)
45
46
47
48
49
50
51
52
53
54
55
56

    def tflops(t_ms):
        flops = 2 * M * K * N
        return flops / (t_ms * 1e-3) / 1e12

    return tflops(ms), tflops(max_ms), tflops(min_ms)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    args = parser.parse_args()

57
    benchmark.run(print_data=True)