fused_moe.py 7.33 KB
Newer Older
1
2
3
4
import functools
from typing import Optional

import torch
5
from sgl_kernel import silu_and_mul
6
7
8


def get_scalar_type(num_bits: int, has_zp: bool):
9
    from sgl_kernel.scalar_type import scalar_types
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    if has_zp:
        assert num_bits == 4
        return scalar_types.uint4
    else:
        return scalar_types.uint4b8 if num_bits == 4 else scalar_types.uint8b128


def fused_marlin_moe(
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    w1_scale: torch.Tensor,
    w2_scale: torch.Tensor,
    gating_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    g_idx1: Optional[torch.Tensor] = None,
    g_idx2: Optional[torch.Tensor] = None,
    sort_indices1: Optional[torch.Tensor] = None,
    sort_indices2: Optional[torch.Tensor] = None,
    w1_zeros: Optional[torch.Tensor] = None,
    w2_zeros: Optional[torch.Tensor] = None,
    workspace: Optional[torch.Tensor] = None,
    num_bits: int = 8,
    is_k_full: bool = True,
    inplace: bool = False,
) -> torch.Tensor:
    """
    This function computes a Mixture of Experts (MoE) layer using two sets of
    weights, w1 and w2, and top-k gating mechanism.

    Parameters:
    - hidden_states (torch.Tensor): The input tensor to the MoE layer.
    - w1 (torch.Tensor): The first set of expert weights.
    - w2 (torch.Tensor): The second set of expert weights.
    - w1_scale (torch.Tensor): Scale to be used for w1.
    - w2_scale (torch.Tensor): Scale to be used for w2.
    - gating_output (torch.Tensor): The output of the gating operation
        (before softmax).
    - g_idx1 (Optional[torch.Tensor]): The first set of act_order indices.
    - g_idx2 (Optional[torch.Tensor]): The second set of act_order indices.
    - sort_indices1 (Optional[torch.Tensor]): The first act_order input
        permutation.
    - sort_indices2 (Optional[torch.Tensor]): The second act_order input
        permutation.
    - topk_weights (torch.Tensor): Top-k weights.
    - topk_ids (torch.Tensor): Indices of topk-k elements.
    - w1_zeros (Optional[torch.Tensor]): Optional zero points to be used for w1.
    - w2_zeros (Optional[torch.Tensor]): Optional zero points to be used for w2.
    - num_bits (bool): The number of bits in expert weights quantization.

    Returns:
    - torch.Tensor: The output tensor after applying the MoE layer.
    """
    # Delay the import to avoid circular dependency
    from sglang.srt.layers.moe.fused_moe_triton import (
        moe_align_block_size,
        try_get_optimal_moe_config,
    )

    # Check constraints.
    assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
    assert hidden_states.shape[1] == w1.shape[1] * 16, "Hidden size mismatch w1"
    assert hidden_states.shape[1] == w2.shape[2] // (
        num_bits // 2
    ), "Hidden size mismatch w2"
    assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
    assert w1.is_contiguous(), "Expert weights1 must be contiguous"
    assert w2.is_contiguous(), "Expert weights2 must be contiguous"
    assert hidden_states.dtype in [torch.float16, torch.bfloat16]
    assert num_bits in [4, 8]

    M, K = hidden_states.shape
    E = w1.shape[0]
    N = w2.shape[1] * 16
    topk = topk_ids.shape[1]

    get_config_func = functools.partial(
        try_get_optimal_moe_config,
        w1.shape,
        w2.shape,
        topk_ids.shape[1],
        None,
        is_marlin=True,
    )
    config = get_config_func(M)

    block_size_m = config["BLOCK_SIZE_M"]

    if global_num_experts == -1:
        global_num_experts = E
    sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
        topk_ids, block_size_m, global_num_experts
    )

    if workspace is None:
        max_workspace_size = (max(2 * N, K) // 64) * (
            sorted_token_ids.size(0) // block_size_m
        )
        device = hidden_states.device
        sms = torch.cuda.get_device_properties(device).multi_processor_count
        max_workspace_size = min(max_workspace_size, sms * 4)
        workspace = torch.zeros(
            max_workspace_size, dtype=torch.int, device=device, requires_grad=False
        )

    scalar_type1 = get_scalar_type(num_bits, w1_zeros is not None)
    scalar_type2 = get_scalar_type(num_bits, w2_zeros is not None)

    intermediate_cache2 = torch.empty(
        (M * topk_ids.shape[1], N),
        device=hidden_states.device,
        dtype=hidden_states.dtype,
    )
    intermediate_cache13 = torch.empty(
        (M * topk_ids.shape[1] * max(2 * N, K),),
        device=hidden_states.device,
        dtype=hidden_states.dtype,
    )
    intermediate_cache1 = intermediate_cache13[: M * topk_ids.shape[1] * 2 * N]
    intermediate_cache1 = intermediate_cache1.view(-1, 2 * N)
    intermediate_cache3 = intermediate_cache13[: M * topk_ids.shape[1] * K]
    intermediate_cache3 = intermediate_cache3.view(-1, K)

    use_atomic_add = (
        hidden_states.dtype == torch.half
        or torch.cuda.get_device_capability(hidden_states.device)[0] >= 9
    )

    intermediate_cache1 = torch.ops.sgl_kernel.moe_wna16_marlin_gemm.default(
        hidden_states,
        intermediate_cache1,
        w1,
        w1_scale,
        w1_zeros,
        g_idx1,
        sort_indices1,
        workspace,
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        topk_weights,
        moe_block_size=block_size_m,
        top_k=topk,
        mul_topk_weights=False,
        is_ep=expert_map is not None,
        b_q_type_id=scalar_type1.id,
        size_m=M,
        size_n=2 * N,
        size_k=K,
163
        is_k_full=is_k_full,
164
165
166
167
168
        use_atomic_add=use_atomic_add,
        use_fp32_reduce=True,
        is_zp_float=False,
    )

169
    silu_and_mul(intermediate_cache1.view(-1, 2 * N), intermediate_cache2)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    if expert_map is not None:
        intermediate_cache3.zero_()

    intermediate_cache3 = torch.ops.sgl_kernel.moe_wna16_marlin_gemm.default(
        intermediate_cache2,
        intermediate_cache3,
        w2,
        w2_scale,
        w2_zeros,
        g_idx2,
        sort_indices2,
        workspace,
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        topk_weights,
        moe_block_size=block_size_m,
        top_k=1,
        mul_topk_weights=True,
        is_ep=expert_map is not None,
        b_q_type_id=scalar_type2.id,
        size_m=M * topk,
        size_n=K,
        size_k=N,
195
        is_k_full=is_k_full,
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        use_atomic_add=use_atomic_add,
        use_fp32_reduce=True,
        is_zp_float=False,
    ).view(-1, topk, K)

    output = hidden_states if inplace else torch.empty_like(hidden_states)
    return torch.sum(
        intermediate_cache3.view(*intermediate_cache3.shape), dim=1, out=output
    )


def fused_marlin_moe_fake(
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    w1_scale: torch.Tensor,
    w2_scale: torch.Tensor,
    gating_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    g_idx1: Optional[torch.Tensor] = None,
    g_idx2: Optional[torch.Tensor] = None,
    sort_indices1: Optional[torch.Tensor] = None,
    sort_indices2: Optional[torch.Tensor] = None,
    w1_zeros: Optional[torch.Tensor] = None,
    w2_zeros: Optional[torch.Tensor] = None,
    num_bits: int = 8,
    is_k_full: bool = True,
) -> torch.Tensor:
    return torch.empty_like(hidden_states)