request.rs 7.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Chat Completions API request types

use crate::protocols::common::{default_true, GenerationRequest, LoRAPath, StringOrArray};
use crate::protocols::openai::chat::types::*;
use crate::protocols::openai::common::StreamOptions;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;

#[derive(Debug, Clone, Deserialize, Serialize)]
pub struct ChatCompletionRequest {
    /// ID of the model to use
    pub model: String,

    /// A list of messages comprising the conversation so far
    pub messages: Vec<ChatMessage>,

    /// What sampling temperature to use, between 0 and 2
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>,

    /// How many chat completion choices to generate for each input message
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u32>,

    /// If set, partial message deltas will be sent
    #[serde(default)]
    pub stream: bool,

    /// Options for streaming response
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream_options: Option<StreamOptions>,

    /// Up to 4 sequences where the API will stop generating further tokens
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stop: Option<StringOrArray>,

    /// The maximum number of tokens to generate
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_tokens: Option<u32>,

    /// An upper bound for the number of tokens that can be generated for a completion
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_completion_tokens: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far
    #[serde(skip_serializing_if = "Option::is_none")]
    pub presence_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frequency_penalty: Option<f32>,

    /// Modify the likelihood of specified tokens appearing in the completion
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logit_bias: Option<HashMap<String, f32>>,

    /// A unique identifier representing your end-user
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,

    /// If specified, our system will make a best effort to sample deterministically
    #[serde(skip_serializing_if = "Option::is_none")]
    pub seed: Option<i64>,

    /// Whether to return log probabilities of the output tokens
    #[serde(default)]
    pub logprobs: bool,

    /// An integer between 0 and 20 specifying the number of most likely tokens to return
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_logprobs: Option<u32>,

    /// An object specifying the format that the model must output
    #[serde(skip_serializing_if = "Option::is_none")]
    pub response_format: Option<ResponseFormat>,

    /// A list of tools the model may call
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tools: Option<Vec<Tool>>,

    /// Controls which (if any) tool is called by the model
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tool_choice: Option<ToolChoice>,

    /// Whether to enable parallel function calling during tool use
    #[serde(skip_serializing_if = "Option::is_none")]
    pub parallel_tool_calls: Option<bool>,

    /// Deprecated: use tools instead
    #[serde(skip_serializing_if = "Option::is_none")]
    pub functions: Option<Vec<Function>>,

    /// Deprecated: use tool_choice instead
    #[serde(skip_serializing_if = "Option::is_none")]
    pub function_call: Option<FunctionCall>,

    // ============= SGLang Extensions =============
    /// Top-k sampling parameter (-1 to disable)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_k: Option<i32>,

    /// Min-p nucleus sampling parameter
    #[serde(skip_serializing_if = "Option::is_none")]
    pub min_p: Option<f32>,

    /// Minimum number of tokens to generate
    #[serde(skip_serializing_if = "Option::is_none")]
    pub min_tokens: Option<u32>,

    /// Repetition penalty for reducing repetitive text
    #[serde(skip_serializing_if = "Option::is_none")]
    pub repetition_penalty: Option<f32>,

    /// Regex constraint for output generation
    #[serde(skip_serializing_if = "Option::is_none")]
    pub regex: Option<String>,

    /// EBNF grammar constraint for structured output
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ebnf: Option<String>,

    /// Specific token IDs to use as stop conditions
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stop_token_ids: Option<Vec<i32>>,

    /// Skip trimming stop tokens from output
    #[serde(default)]
    pub no_stop_trim: bool,

    /// Ignore end-of-sequence tokens during generation
    #[serde(default)]
    pub ignore_eos: bool,

    /// Continue generating from final assistant message
    #[serde(default)]
    pub continue_final_message: bool,

    /// Skip special tokens during detokenization
    #[serde(default = "default_true")]
    pub skip_special_tokens: bool,

    // ============= SGLang Extensions =============
    /// Path to LoRA adapter(s) for model customization
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lora_path: Option<LoRAPath>,

    /// Session parameters for continual prompting
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_params: Option<HashMap<String, serde_json::Value>>,

    /// Separate reasoning content from final answer (O1-style models)
    #[serde(default = "default_true")]
    pub separate_reasoning: bool,

    /// Stream reasoning tokens during generation
    #[serde(default = "default_true")]
    pub stream_reasoning: bool,

    /// Return model hidden states
    #[serde(default)]
    pub return_hidden_states: bool,
}

impl GenerationRequest for ChatCompletionRequest {
    fn is_stream(&self) -> bool {
        self.stream
    }

    fn get_model(&self) -> Option<&str> {
        Some(&self.model)
    }

    fn extract_text_for_routing(&self) -> String {
        // Extract text from messages for routing decisions
        self.messages
            .iter()
            .filter_map(|msg| match msg {
                ChatMessage::System { content, .. } => Some(content.clone()),
                ChatMessage::User { content, .. } => match content {
                    UserMessageContent::Text(text) => Some(text.clone()),
                    UserMessageContent::Parts(parts) => {
                        let texts: Vec<String> = parts
                            .iter()
                            .filter_map(|part| match part {
                                ContentPart::Text { text } => Some(text.clone()),
                                _ => None,
                            })
                            .collect();
                        Some(texts.join(" "))
                    }
                },
                ChatMessage::Assistant {
                    content,
                    reasoning_content,
                    ..
                } => {
                    // Combine content and reasoning content for routing decisions
                    let main_content = content.clone().unwrap_or_default();
                    let reasoning = reasoning_content.clone().unwrap_or_default();
                    if main_content.is_empty() && reasoning.is_empty() {
                        None
                    } else {
                        Some(format!("{} {}", main_content, reasoning).trim().to_string())
                    }
                }
                ChatMessage::Tool { content, .. } => Some(content.clone()),
                ChatMessage::Function { content, .. } => Some(content.clone()),
            })
            .collect::<Vec<String>>()
            .join(" ")
    }
}